Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Ant colony optimization algorithm for a Bi-criteria 2-stage hybrid flowshop scheduling problem

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

We consider the problem of scheduling jobs in a hybrid flowshop with two stages. Our objective is to minimize both the makespan and the total completion time of jobs. This problem has been little studied in the literature. To solve the problem, we propose an ant colony optimization procedure. Computational experiments are conducted using random-generated instances from the literature. In comparison against other well-known heuristics from the literature, experimental results show that our algorithm outperforms such heuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ardila Hernández, C. J. (2006). Diseño y análisis comparativo del algoritmo híbrido Ant Colony-Evolutivos con respecto al algoritmo Ant Colony en la solución de un problema de optimización Multiobjetivo en Redes ópticas. Master Thesis, Universidad del Norte, Barranquilla, Colombia.

  • Brah S. A., Hunsucker J. L.: Branch and bound algorithm for the flowshop with multiple processors. European Journal of Operation Research 51, 88–99 (1991)

    Article  Google Scholar 

  • Chen, B. (1994). Scheduling multiprocessor flowshops. In Advances in optimization and approximation. Dordrecht: Kluwer.

  • Chen B.: Analysis of classes of heuristics for scheduling a two-stage flowshop with parallel machines at one stage. Journal of the Operational Research Society 46, 234–244 (1995)

    Google Scholar 

  • Dessouky M., Dessouky M., Verma S.: Flowshop scheduling with identical jobs and uniform parallel machines. European Journal of Operational Research 109, 620–631 (1998)

    Article  Google Scholar 

  • Dorigo M., Blum C.: Ant colony optimization theory: A survey. Theoretical Computer Science 344, 243–278 (2005)

    Article  Google Scholar 

  • Dorigo M., Gambardella L. M.: Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1, 53–66 (1997)

    Article  Google Scholar 

  • Dorigo M., Stützle T.: Ant colony optimization. MIT Press, Cambridge (2004)

    Book  Google Scholar 

  • Dorigo M., Di Caro G., Gambardella L. M.: Ant algorithms for discrete optimization. Artificial Life 5(3), 137–172 (1999)

    Article  Google Scholar 

  • Gupta J.: Two stage hybrid flowshop scheduling problem. Journal of the Operations Research Society 38, 359–364 (1988)

    Google Scholar 

  • Haouari M., M’Hallah R.: Heuristic algorithms for the two-stage hybrid flowshop problem. Operations Research Letters 21, 43–53 (1997)

    Article  Google Scholar 

  • Hoogeveen H.: Multicriteria scheduling. European Journal of Operational Research 167, 592–623 (2005)

    Article  Google Scholar 

  • Linn R., Zhang W.: Hybrid flowshop scheduling: A survey. Computers and Industrial Engineering 37, 57–61 (1999)

    Article  Google Scholar 

  • Merkle, D., & Middendorf, M. (2000). An ant algorithm with a new pheromone evaluation rule for total tardiness problems. In Proceedings of the Evo Workshops (pp. 287–296). Berlin: Springer.

  • Montoya-Torres, J. R., & Vargas-Nieto, F. (2008). Production scheduling in the apparel industry using an evolutionary algorithm. Submitted.

  • Moursli O., Pochet Y.: A branch and bound algorithm for the hybrid flowshop. International Journal of Production Economics 64, 113–125 (2000)

    Article  Google Scholar 

  • Nagar A., Haddock J., Heragu S.: Multiple and bicriteria scheduling: A literature survey. European Journal of Operational Research 81, 88–104 (1995)

    Article  Google Scholar 

  • Paternina-Arboleda C. D., Montoya-Torres J. R., Herrera-Hernández M. C., Acero-Domínguez M.: Scheduling jobs on a k-stage flexible flowshop. Annals of Operations Research 164(1), 29–40 (2008)

    Article  Google Scholar 

  • Pinedo, M. (2008). Scheduling: Theory, algorithms, and systems. Springer.

  • Rajendran C., Ziegler H.: Ant-colony algorithms for permutation flowshop-scheduling to minimize makespan/total flowtime of jobs. European Journal of Operational Research 155, 426–438 (2004)

    Article  Google Scholar 

  • Reza Hejazi S., Saghafian S.: Flowshpo-scheduling problems with makespan criterion: A review. International Journal of Production Research 43(14), 2895–2929 (2005)

    Article  Google Scholar 

  • Riane, F., Meskens, N., & Artiba, A. (1997) Bicriteria scheduling hybrid flowshop problems. In Proceedings of the International Conference on Industrial Engineering and Production Management (IEPM’97) (pp. 34–43). Lyon, France.

  • Sivrikaya Serifoglu F., Ulusoy G.: Multiprocessor task scheduling in multistage hybrid flow-shops: A genetic algorithm approach. Journal of the Operational Research Society 55, 504–512 (2004)

    Article  Google Scholar 

  • Solano-Charris, E. L. (2008). Hybrid flowshop scheduling using meta-heuristics: Ant colony (in Spanish). Master of Science Thesis. Department of Industrial Engineering, Universidad del Norte, Barranquilla, Colombia.

  • Solano-Charris, E. L., Pérez-Martínez, A. J., & Paternina-Arboleda, C. D. (2008). Optimización multi-objetivo mediante metaheurísticas: Colonia de hormigas. In J. Amador, C. Paternina-Arboleda, & J. Velázquez (Eds.), Proceedings of the XIV Latin Ibero-American Congress on Operations Research (CLAIO 2008). Cartagena de Indias, Colombia. September 9–12, 2008. (ISBN: 978-958-825283-4). CD-ROM. Paper code 351.

  • Solimanpur M., Vrat P., Shankar R.: A neuro-tabu search heuristic for the flowshop scheduling problem. Computers and Operations Research 31, 2151–2164 (2003)

    Article  Google Scholar 

  • Stützle, T. (1998). An ant approach to the flowshop problem. In Proceedings of EUFIT’98 (pp. 1560–1564). Aachen, Germany.

  • T’kindt V., Billaut J. C.: Multicriteria scheduling: Theory, models and algorithms. Springer, Berlin (2006)

    Google Scholar 

  • T’kindt V., Gupta J. N. D., Billaut J. C.: Two-machine flowshop-scheduling with a secondary criterion. Computers and Operations Research 30, 505–526 (2003)

    Article  Google Scholar 

  • T’kindt V., Monmarché N., Tercinet F., Laügt D.: An ant colony optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem. European Journal of Operational Research 142, 250–257 (2002)

    Article  Google Scholar 

  • Ying K. C., Liao C. J.: An ant colony system for permutation flow-shop sequencing. Computers and Operations Research 31, 791–801 (2003)

    Article  Google Scholar 

  • Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. Technical report TIK Report 103. Computer Engineering and Network Laboratory, Swiss Federal Institute of Technolgy. Zurich, Switzerland.

  • Zitzler E., Thiele L.: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elyn L. Solano-Charris or Jairo R. Montoya-Torres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solano-Charris, E.L., Montoya-Torres, J.R. & Paternina-Arboleda, C.D. Ant colony optimization algorithm for a Bi-criteria 2-stage hybrid flowshop scheduling problem. J Intell Manuf 22, 815–822 (2011). https://doi.org/10.1007/s10845-009-0370-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-009-0370-y

Keywords

Navigation