Abstract
This paper addresses the problem of parts scheduling in a cellular manufacturing system (CMS) by considering exceptional parts processed on machines located in multiple cells. To optimize the scheduling of parts as well as to minimize material handling between cells, the practice has to develop processing sequences for the parts in cells. A commonly chosen objective is to find part sequences within cells which results in a minimum tardiness. This paper proposes a nonlinear mathematical programming model of the problem by minimizing the total weighted tardiness in a CMS. To solve the mathematical model, a scatter search approach is developed, in which the common components of scatter search are redefined and redesigned so as to better fit the problem. This scatter search approach considers two different methods to generate diverse initial solutions and two improvement methods, and adopts the roulette wheel selection in the combination method to further expand the conceptual framework and implementation of the scatter search. The proposed approach is compared with the commercial solver CPLEX on a set of test problems, some of which are large dimensions. Computational results have demonstrated the effectiveness of this scatter search approach.
Similar content being viewed by others
References
Arikan F., Gungor Z. (2005) A parametric model for cell formation and exceptional elements’ problems with fuzzy parameters. Journal of Intelligent Manufacturing 16(1): 103–114. doi:10.1007/s10845-005-4827-3
Askin R.G., Selim H.M., Vakharia A. (1997) A methodology for designing flexible cellular manufacturing systems. IIE Transactions 29: 599–610
Baker K.R. (1990) Scheduling groups of jobs in the two-machine flow shop. Mathematical and Computer Modelling 13(3): 29–36. doi:10.1016/0895-7177(90)90368-W
Bazargan-lari M., Kaebernick H., Harraf A. (2000) Cell formation and layout designs in a cellular manufacturing environment: A case study. International Journal of Production Research 38(7): 1689–1709. doi:10.1080/002075400188807
Billo R.E., Bidanda B., Tate D. (1996) A genetic cluster algorithm for the machine-component grouping problem. Journal of Intelligent Manufacturing 7(3): 229–241. doi:10.1007/BF00118082
Burcu B.K., Halit Ü. (2006) A scatter search-based heuristic to locate capacitated transshipment points. Computers & Operations Research 34(10): 3112–3125
Cheng R., Gen M., Tsujimura Y. (1996) A tutorial survey of job-shop scheduling problems using genetic algorithms. Computers & Industrial Engineering 30(4): 983–997. doi:10.1016/0360-8352(96)00047-2
Glover F. (1977) Heuristics for integer programming using surrogate constraints. Decision Sciences 8: 156–166. doi:10.1111/j.1540-5915.1977.tb01074.x
Glover, F. (1998). A template for scatter search and path relinking. Artificial Evolution, Lecture Notes in Computer Science 1363. Berlin: Springer, pp. 13–54.
Gupta J.N.D., Schaller J.E. (2006) Minimizing flow time in a flow-line manufacturing cell with family setup times. The Journal of the Operational Research Society 57(2): 163–176
Hsu C.M., Su C. (1998) Multi-objective machine-component grouping in cellular manufacturing, a genetic algorithm. Production Planning and Control 9(2): 155–166. doi:10.1080/095372898234370
Krishnamoorthy B., Kamath M. (2000) Scheduling in a cellular manufacturing environment: A review of recent research. Journal of Engineering Valuation and Cost Analysis 2(5): 409–423
Laguna M., Marti R. (2003) Scatter search. Methodology and implementations in C. Kluwer, Boston
Liang M., Zolfaghari S. (1999) Machine cell formation considering processing times and machine capacities: An ortho-synapse Hopfield neural network approach. Journal of Intelligent Manufacturing 10(5): 437–447. doi:10.1023/A:1008923114466
Logendran R., Mai L., Talkington D. (1995) Combined heuristics for bi-level group scheduling problems. International Journal of Production Economics 38(2–3): 133–145. doi:10.1016/0925-5273(94)00083-M
Mahmood F., Dooley K.J., Starr P.J. (1990) An investigation of dynamic group scheduling heuristics in a job shop manufacturing cell. International Journal of Production Research 28(9): 1695–1711. doi:10.1080/00207549008942824
Marti R., Laguna M., Glover F. (2006) Principles of scatter search. European Journal of Operational Research 169(2): 359–372. doi:10.1016/j.ejor.2004.08.004
Reddy V., Narendran T.T. (2003) Heuristics for scheduling sequence-dependent set-up jobs in flow line cells. International Journal of Production Research 41(1): 193–206. doi:10.1080/00207540210163973
Ruben R.A., Mosier C.T., Mahmoodi F. (1993) Comprehensive analysis of group scheduling heuristics in a job shop cell. International Journal of Production Research 31(6): 1343–1369. doi:10.1080/00207549308956795
Safaei N., Saidi-Mehrabad M., Babakhani M. (2007) Designing cellular manufacturing systems under dynamic and uncertain conditions. Journal of Intelligent Manufacturing 18(3): 383–399. doi:10.1007/s10845-007-0029-5
Schaller J. (2000) A comparison of heuristics for family and job scheduling in a flow-line manufacturing cell. International Journal of Production Research 38(2): 287–308. doi:10.1080/002075400189419
Selim H.M., Askin R.G., Vakharia A.J. (1998) Cell formation in group technology: Review, evaluation and direction for future research. Computers & Industrial Engineering 34: 2–30. doi:10.1016/S0360-8352(97)00147-2
Skorin-Kapov J., Vakharia A.J. (1993) Scheduling a flow-line manufacturing cell: A tabu search approach. International Journal of Production Research 31(7): 1721–1734. doi:10.1080/00207549308956819
Solimanpur M., Vrat P., Shankar R. (2004) A heuristic to minimize makespan of cell scheduling problem. International Journal of Production Economics 88(3): 231–241. doi:10.1016/S0925-5273(03)00196-8
Sridhar J., Rajendran C. (1994) A genetic algorithm for family and job scheduling in a flowline-based manufacturing cell. Computers & Industrial Engineering 27: 469–472. doi:10.1016/0360-8352(94)90336-0
Tsai C.H., Li R.-K. (2000) Due-date oriented scheduling heuristic for job shop cellular manufacturing system. International Journal of Industrial Engineering: Theory Applications and Practice 7(1): 76–88
Venkataramanaiah S. (2008) Scheduling in cellular manufacturing systems: A heuristic approach. International Journal of Production Research 46(2): 429–449. doi:10.1080/00207540601138577
Vin E., De Lit P., Delchambre A. (2005) A multiple-objective grouping genetic algorithm for the cell formation problem with alternative routings. Journal of Intelligent Manufacturing 16(2): 189–205. doi:10.1007/s10845-004-5888-4
Wang T.Y., Wu K.B., Liu Y.W. (2001) A simulated annealing algorithm for facility layout problems under variable demand in cellular manufacturing systems. Computers in Industry 46(2): 181–188. doi:10.1016/S0166-3615(01)00107-5
Wei N.C., Mejabi O.O. (2008) A clustering approach for minimizing intercell trips in cell formation. Journal of Intelligent Manufacturing 19(1): 13–20. doi:10.1007/s10845-007-0042-8
Wemmerlov U., Johnson D.J. (1997) Cellular manufacturing at 46 user plants: Implementation experiences and performance improvements. International Journal of Production Research 35(1): 29–49. doi:10.1080/002075497195966
Wemmerlov U., Vakharia A.J. (1991) Job and family scheduling of a flow-line manufacturing cell: A simulation study. IIE Transactions 23(4): 383–393. doi:10.1080/07408179108963871
Willow C.C. (2002) A feedforward multi-layer neural network for machine cell formation in computer integrated manufacturing. Journal of Intelligent Manufacturing 13(2): 75–87. doi:10.1023/A:1014524611895
Wu X., Chao-Hsien C., Yunfeng W., Weili Y. (2007) A genetic algorithm for cellular manufacturing design and layout. European Journal of Operational Research 181(1): 156–167. doi:10.1016/j.ejor.2006.05.035
Yang W.H., Liao C.J. (1996) Group scheduling on two cells with intercell movement. Computers & Operations Research 23(10): 997–1006. doi:10.1016/0305-0548(96)00003-2
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tang, J., Wang, X., Kaku, I. et al. Optimization of parts scheduling in multiple cells considering intercell move using scatter search approach. J Intell Manuf 21, 525–537 (2010). https://doi.org/10.1007/s10845-008-0236-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10845-008-0236-8