Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Incorporating communities’ structures in predictions of missing links

  • Published:
Journal of Intelligent Information Systems Aims and scope Submit manuscript

Abstract

This article introduces a community-based approach to link prediction that identifies the links likely to be seen in the near future in a network. The proposed method incorporates community structure as a feature in the predictions of missing links in a network. We design a feature-based similarity measure that considers the impact of community structure in addition to other network features in link prediction. We analyze the performance of the devised approach in terms of precision, recall, accuracy, and area-under-the-curve (AUC) metrics on real-world datasets. Further, we examine the performance of the devised method in terms of execution time against real-world and synthetic datasets. The proposed approach outperforms the other existing approaches, as will be shown experimentally later.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Adamic, L. A., & Adar, E. (2003). Friends and neighbors on the web. Social Networks, 25(3), 211–230.

    Google Scholar 

  • Akcora, C. G., Carminati, B., & Ferrari, E. (2013). User similarities on social networks. Social Network Analysis and Mining, 3(3), 475–495.

    Google Scholar 

  • Al-Hasan, M., Chaoji, V., Salem, S., & Zaki, M. (2006). Link prediction using supervised learning. In SDM06: Workshop on link analysis, counter-terrorism and security. pp. 1–10.

  • Al-Hasan, M., & Zaki, M. J. (2011). A survey of link prediction in social networks. In Social network data analytics, pp. 243–275. Springer.

  • Almansoori, W., Gao, S., Jarada, T. N., Elsheikh, A. M., Murshed, A. N., Jida, J., Alhajj, R., & Rokne, J. (2012). Link prediction and classification in social networks and its application in healthcare and systems biology. Network Modeling Analysis in Health Informatics and Bioinformatics, 1(1-2), 27–36.

    Google Scholar 

  • Backstrom, L., & Leskovec, J. (2011). Supervised random walks: predicting and recommending links in social networks. In Proceedings of the fourth ACM international conference on web search and data mining, pp. 635–644. ACM.

  • Bhattacharyya, P., Garg, A., & Wu, S. F. (2011). Analysis of user keyword similarity in online social networks. Social Network Analysis and Mining, 1(3), 143–158.

    Google Scholar 

  • Bringmann, B., Berlingerio, M., Bonchi, F., & Gionis, A. (2010). Learning and predicting the evolution of social networks. IEEE Intelligent Systems, 25(4), 26–35.

    Google Scholar 

  • Chen, B., & Chen, L. (2014). A link prediction algorithm based on ant colony optimization. Applied Intelligence, 41(3), 694–708.

    Google Scholar 

  • Chen, J., Geyer, W., Dugan, C., Muller, M., & Guy, I. (2009). Make new friends, but keep the old: Recommending people on social networking sites. In Proceedings of the SIGCHI conference on human factors in computing systems, pp. 201–210. ACM.

  • Chen, H., Yin, H., Wang, W., Wang, H., Nguyen, Q. V. H., & Li, X. (2018). PME: Projected metric embedding on heterogeneous networks for link prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp 1177–1186. ACM.

  • Clauset, A., Moore, C., & Newman, M. E. (2008). Hierarchical structure and the prediction of missing links in networks. Nature, 453(7191), 98–101.

    Google Scholar 

  • De Sá, H. R., & Prudêncio, R. B. (2011). Supervised link prediction in weighted networks. In The 2011 international joint conference on, neural networks (IJCNN), pp. 2281–2288. IEEE.

  • Fazel-Zarandi, M., Devlin, H. J., Huang, Y., & Contractor, N. (2011). Expert recommendation based on social drivers, social network analysis, and semantic data representation. In Proceedings of the 2nd international workshop on information heterogeneity and fusion in recommender systems, pp. 41–48. ACM.

  • Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3), 75–174.

    MathSciNet  Google Scholar 

  • Friedman, N., Getoor, L., Koller, D., & Pfeffer, A. (1999). Learning probabilistic relational models. In IJCAI, vol. 99, pp. 1300–1309.

  • Gao, F., Musial, K., Cooper, C., & Tsoka, S. (2015). Link prediction methods and their accuracy for different social networks and network metrics. Scientific programming, 2015, 1–13.

    Google Scholar 

  • Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 7821–7826.

    MathSciNet  MATH  Google Scholar 

  • Grover, A., & Leskovec, J. (2016). Node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining. pp 855–864. ACM.

  • Guimer‘a, R., & Sales-Pardo, M. (2009). Missing and spurious interactions and the reconstruction of complex networks. Proceedings of the National Academy of Sciences, 106(52), 22,073–22,078.

    Google Scholar 

  • Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. In: Advances in neural information processing systems, pp. 1024–1034.

  • Hao, W., & Dongsu, L. (2015). Friend recommendation in social network. New Technology of Library and Information Service, 1, 012.

    Google Scholar 

  • Heckerman, D., Meek, C., & Koller, D. (2004). Probabilistic entity-relationship models, PRMs, and plate models. In Proceedings of the ICML-2004 workshop on statistical relational learning and its connections to other fields. IMLS, Banff, Canada, pp. 55–60.

  • Huang, Z., & Lin, D. K. (2009). The time-series link prediction problem with applications in communication surveillance. INFORMS Journal on Computing, 21(2), 286–303.

    Google Scholar 

  • Jaccard, P. (1901). Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines. Bull Soc Vaudoise Sci Nat, 37, 241–272.

    Google Scholar 

  • Jeh, G., & Widom, J. (2002). Simrank: a measure of structural-context similarity. In Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining, pp. 538–543. ACM.

  • Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., & Barabási, A. L. (2000). The large-scale organization of metabolic networks. Nature, 407(6804), 651–654.

    Google Scholar 

  • Juszczyszyn, K., Musial, K., & Budka, M. (2011). Link prediction based on subgraph evolution in dynamic social networks. In 2011 IEEE 3rd international conference on, privacy, security, risk and trust (PASSAT) and 2011 IEEE third inernational conference on social computing (socialcom), pp. 27–34. IEEE.

  • Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika, 18(1), 39–43.

    MATH  Google Scholar 

  • Kiousis, S., Popescu, C., & Mitrook, M. (2007). Understanding influence on corporate reputation: An examination of public relations efforts, media coverage, public opinion, and financial performance from an agenda-building and agenda-setting perspective. Journal of Public Relations Research, 19(2), 147–165.

    Google Scholar 

  • Knuth, D. E. (1993). The Stanford graphbase: A platform for combinatorial computing, (pp. 74–87). New York: ACM Press.

    MATH  Google Scholar 

  • Krebs, V. (2004). Unpublished. http://www-personal.umich.edu/mejn/netdata/.

  • Lü, L., & Zhou, T. (2011). Link prediction in complex networks: a survey. Physica A: Statistical Mechanics and its Applications, 390(6), 1150–1170.

    Google Scholar 

  • Lü, L., Jin, C. H., & Zhou, T. (2009). Similarity index based on local paths for link prediction of complex networks. Physical Review E, 80(4), 046,122.

    Google Scholar 

  • Liben-Nowell, D., & Kleinberg, J. (2007). The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology, 58 (7), 1019–1031.

    Google Scholar 

  • Lichtenwalter, R. N., Lussier, J. T., & Chawla, N. V. (2010). New perspectives and methods in link prediction. In Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, pp. 243–252. ACM.

  • Liu, W., & Lü, L. (2010). Link prediction based on local random walk. EPL (Europhysics Letters), 89(5), 58,007.

    Google Scholar 

  • Liu, R., Ouyang, Y., Rong, W., Song, X., Tang, C., & Xiong, Z. (2016). Rating prediction based job recommendation service for college students. In International conference on computational science and its applications, pp. 453–467. Springer.

  • Lusseau, D., Schneider, K., Boisseau, O. J., Haase, P., Slooten, E., & Dawson, S. M. (2003). The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. Behavioral Ecology and Sociobiology, 54 (4), 396–405.

    Google Scholar 

  • Lyu, T., Sun, F., Jiang, P., Ou, W., & Zhang, Y. (2019). Compositional network embedding for link prediction. In: Proceedings of the 13th ACM conference on recommender systems. pp. 388–392. ACM.

  • Maxson, C. L., Hennigan, K., & Sloane, D. C. (2003). Factors that influence public opinion of the police. US Department of Justice Office of Justice Programs National Institute of Justice.

  • Moore, H. T. (1921). The comparative influence of majority and expert opinion. The American Journal of Psychology, 32(1), 16–20.

    Google Scholar 

  • Mori, J., Kajikawa, Y., Kashima, H., & Sakata, I. (2012). Machine learning approach for finding business partners and building reciprocal relationships. Expert Systems with Applications, 39(12), 10,402–10,407.

    Google Scholar 

  • Newman, M. E. (2001). Clustering and preferential attachment in growing networks. Physical Review E, 64(2), 025,102.

    Google Scholar 

  • Oh, H., Chung, M. H., & Labianca, G. (2004). Group social capital and group effectiveness: The role of informal socializing ties. Academy of Management Journal, 47 (6), 860–875.

    Google Scholar 

  • Oshagan, H. (1996). Reference group influence on opinion expression. International Journal of Public Opinion Research, 8(4), 335–354.

    Google Scholar 

  • Papadimitriou, A., Symeonidis, P., & Manolopoulos, Y. (2012). Fast and accurate link prediction in social networking systems. Journal of Systems and Software, 85(9), 2119–2132.

    Google Scholar 

  • Pons, P., & Latapy, M. (2006). Computing communities in large networks using random walks. Journal of Graph Algorithms Applied, 10(2), 191–218.

    MathSciNet  MATH  Google Scholar 

  • Raeder, T., Lizardo, O., Hachen, D., & Chawla, N. V. (2011). Predictors of short-term decay of cell phone contacts in a large scale communication network. Social Networks, 33(4), 245–257.

    Google Scholar 

  • Rai, A. K., Yadav, R. K., Tripathi, S. P., & Tewari, R. R. (2017). A survey on link prediction problem in social networks. International Journal for Research in Applied Science & Engineering Technology, 5(9), 1875–1883.

    Google Scholar 

  • Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., & Barabási, A. L. (2002). Hierarchical organization of modularity in metabolic networks. Science, 297 (5586), 1551–1555.

    Google Scholar 

  • Raymond, R., & Kashima, H. (2010). Fast and scalable algorithms for semi-supervised link prediction on static and dynamic graphs. In Joint european conference on machine learning and knowledge discovery in databases, pp. 131–147. Springer.

  • Salton, G., & Mcgill, M.J. (1986). Introduction to modern information retrieval Vol. 1-464. US: McGraw-Hill Inc.

    MATH  Google Scholar 

  • Schmutte, I. M. (2015). Job referral networks and the determination of earnings in local labor markets. Journal of Labor Economics, 33(1), 1–32.

    Google Scholar 

  • Sie, R. L., Drachsler, H., Bitter-Rijpkema, M., & Sloep, P. (2012). To whom and why should i connect? co-author recommendation based on powerful and similar peers. International Journal of Technology Enhanced Learning, 4(1-2), 121–137.

    Google Scholar 

  • Sørensen, T. (1948). A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. BiologiskeSkrifter., 5, 1–34.

    Google Scholar 

  • Sparrowe, R. T., Liden, R. C., Wayne, S. J., & Kraimer, M. L. (2001). Social networks and the performance of individuals and groups. Academy of Management Journal, 44(2), 316–325.

    Google Scholar 

  • Srinivas, V., & Mitra, P. (2016). Locally adaptive link prediction. In Link prediction in social networks (pp. 27–44). Cham : Springer.

  • Sun, D., Zhou, T., Liu, J. G., Liu, R. R., Jia, C. X., & Wang, B. H. (2009). Information filtering based on transferring similarity. Physical Review E, 80 (1), 017,101.

    Google Scholar 

  • Symeonidis, P., & Tiakas, E. (2014). Transitive node similarity: Predicting and recommending links in signed social networks. World Wide Web, 17(4), 743–776.

    Google Scholar 

  • Tan, S. Y., Wu, J., Lü, L., Li, M. J., & Lu, X. (2016). Efficient network disintegration under incomplete information: The comic effect of link prediction. Scientific Reports, 6(1), 1–9.

    Google Scholar 

  • Tripathi, S. P., Yadav, R. K., Rai, A. K., & Tewari, R. R. (2018). Hybrid approach for predicting and recommending links in social networks. In Computational intelligence: Theories, applications and future directions-Volume II (pp. 107–119). Singapore: Springer.

  • Wang, P., Xu, B., Wu, Y., & Zhou, X. (2015). Link prediction in social networks: The state-of-the-art. Science China Information Sciences, 58(1), 1–38.

    Google Scholar 

  • Wang, H., Zhang, F., Hou, M., Xie, X., Guo, M., & Liu, Q. (2018). Shine: Signed heterogeneous information network embedding for sentiment link prediction. In: Proceedings of the 11th ACM international conference on web search and data mining. pp 592–600. ACM.

  • Watts, D. J., & Dodds, P. S. (2007). Influentials, networks, and public opinion formation. Journal of Consumer Research, 34(4), 441–458.

    Google Scholar 

  • Wu, S., Sun, J., & Tang, J. (2013). Patent partner recommendation in enterprise social networks. In Proceedings of the 6th ACM international conference on web search and data mining, pp. 43–52. ACM.

  • Yu, H., Braun, P., Yıldırım, M.A., Lemmens, I., Venkatesan, K., Sahalie, J., Hirozane-Kishikawa, T., Gebreab, F., Li, N., Simonis, N., & et al. (2008). High-quality binary protein interaction map of the yeast interactome network. Science, 322(5898), 104–110.

    Google Scholar 

  • Yu, K., Chu, W., Yu, S., Tresp, V., & Xu, Z. (2006). Stochastic relational models for discriminative link prediction. In Advances in neural information processing systems, pp. 1553–1560.

  • Zachary, W. W. (1977). An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33, 452–473.

    Google Scholar 

  • Zhu, J., Hong, J., & Hughes, J. G. (2002). Using markov models for web site link prediction. In Proceedings of the 13th ACM conference on hypertext and hypermedia, pp. 169–170. ACM.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Kumar Rai.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, R.K., Rai, A.K. Incorporating communities’ structures in predictions of missing links. J Intell Inf Syst 55, 183–205 (2020). https://doi.org/10.1007/s10844-020-00603-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10844-020-00603-y

Keywords

Navigation