Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Measuring similarity of individuals in description logics over the refinement space of conjunctive queries

  • Published:
Journal of Intelligent Information Systems Aims and scope Submit manuscript

Abstract

Similarity assessment is a key operation in several areas of artificial intelligence. This paper focuses on measuring similarity in the context of Description Logics (DL), and specifically on similarity between individuals. The main contribution of this paper is a novel approach based on measuring similarity in the space of Conjunctive Queries, rather than in the space of concepts. The advantage of this approach is two fold. On the one hand, it is independent of the underlying DL and therefore there is no need to design similarity measures for different DL, and, on the other hand, the approach is computationally more efficient than searching in the space of concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. http://www.w3.org/TR/owl2-profiles/

  2. Notice that this approach require large amounts of memory and might no be practical for large knowledge bases.

References

  • Aamodt, A., & Plaza, E. (1994). Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Communications, 7(1), 39–59.

    Google Scholar 

  • Alqadah, F., & Bhatnagar, R. (2011). Similarity measures in formal concept analysis. Annals of Mathematics and Artificial Intelligence, 61(3), 245–256.

    Article  MathSciNet  MATH  Google Scholar 

  • Armengol, E., & Plaza, E. (2003). Relational case-based reasoning for carcinogenic activity prediction. Artificial Intelligence Review, 20(1-2), 121–141.

    Article  Google Scholar 

  • Ashburner, M. (2000). Gene ontology: tool for the unification of biology. Nature Genetics, 25, 25–29.

    Article  Google Scholar 

  • Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., & Patel-Schneider, P.F. (Eds.) (2003). The Description Logic Handbook: Theory, Implementation and Applications. New York: Cambridge University Press.

  • Bergmann, R., & Stahl, A. (1998). Similarity measures for object-oriented case representations. In: Proc. European workshop on case-based reasoning, ewcbr-98, lecture notes in artificial intelligence (pp. 8–13). Springer Verlag.

  • Bisson, G. (1992). Learing in FOL with a similarity measure. In: Proceedings of AAAI 1992 (pp. 82–87).

  • Bodenreider, O., Smith, B., Kumar, A., & Burgun, A. (2007). Investigating subsumption in SNOMED CT: an exploration into large description logic-based biomedical terminologies. Artificial Intelligence in Medicine, 39, 183–195. doi:10.1016/j.artmed.2006.12.003. http://portal.acm.org/citation.cfm?id=1240342.1240604.

    Article  Google Scholar 

  • Carpenter, B. (1992). The logic of typed feature structures. New York.

  • Cojan, J., & Lieber, J. (2010). An algorithm for adapting cases represented in an expressive description logic. In: Case-based reasoning. Research and development, 18th international conference on case-based reasoning, ICCBR 2010, Alessandria, Italy, July 19-22, 2010. Proceedings (pp. 51–65).

  • d’Amato, C., Staab, S., & Fanizzi, N. (2008). On the influence of description logics ontologies on conceptual similarity. In: Proceedings of the 16th international conference on knowledge engineering, lecture notes in computer science (Vol. 5268, pp. 48–63). Springer-Verlag.

  • Emde, W., & Wettschereck, D. (1996). Relational instance based learning. In: L. Saitta (ed.) Machine learning - proceedings 13th international conference on machine learning (pp. 122–130). Morgan Kaufmann Publishers.

  • Fanizzi, N., dAmato, C., & Esposito, F. (2008). Learning with kernels in description logics. In: Inductive logic programming (pp. 210–225). Springer.

  • Formica, A. (2006). Ontology-based concept similarity in formal concept analysis. Information Sciences, 176(18), 2624–2641.

    Article  MathSciNet  MATH  Google Scholar 

  • González-Calero, P.A., Díaz-Agudo, B., & Gómez-Albarrán, M. (1999). Applying DLs for retrieval in case-based reasoning. In: Proceedings of the 1999 description logics workshop (DL’99).

  • Grau, B.C., Halaschek-Wiener, C., Kazakov, Y., & Suntisrivaraporn, B. (2010). Incremental classification of description logics ontologies. JAR, 44(4), 337–369.

    Article  MathSciNet  MATH  Google Scholar 

  • Horridge, M. (2009). A practical guide to building OWL ontologies using protege 4 and CO-ODE tools. Edition 1.2. Tech. rep., The University Of Manchester. http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/resources/ProtegeOWLTutorialP4_v1_2.pdf.

  • Horváth, T., Wrobel, S., & Bohnebeck, U. (2001). Relational instance-based learning with lists and terms. Machine Learning, 43(1-2), 53–80.

    Article  MATH  Google Scholar 

  • Hutchinson, A. (1997). Metrics on terms and clauses. In: ECML ’97: Proceedings of the 9th European conference on machine learning, lecture notes in computer science (Vol. 1224, pp. 138–145). Springer.

  • Jaccard, P. (1901). Etude comparative de la distribution florale dans une portion des Alpes et du Jura. Impr. Corbaz.

  • Kashima, H., Tsuda, K., & Inokuchi, A. (2003). Marginalized kernels between labeled graphs. In: Proceedings of the twentieth international conference (ICML 2003) (pp. 321–328). AAAI Press.

  • Kazakov, Y., & Klinov, P. (2013). Incremental reasoning in el+ without bookkeeping. In: T. Eiter, B. Glimm, Y. Kazakov, M. Krötzsch (eds.), Description logics, CEUR workshop proceedings (vol. 1014, pp. 294–315.) CEUR-WS.org.

  • Kramer, S., Lavraċ, N., & Flach, P. (2001). Propositionalization approaches to relational data mining. Springer.

  • van der Laag, P.R.J., & Nienhuys-Cheng, S.H. (1998). Completeness and properness of refinement operators in inductive logic programming. Journal of Logic Programming, 34(3), 201–225.

    Article  MathSciNet  MATH  Google Scholar 

  • Larson, J., & Michalski, R.S. (1977). Inductive inference of VL decision rules. SIGART Bulletin, 63(63), 38–44. doi:10.1145/1045343.1045369.

    Article  Google Scholar 

  • Lehmann, J., & Hitzler, P. (2007). A refinement operator based learning algorithm for the LC description logic. In: H. Blockeel, J. Ramon, J.W. Shavlik, P. Tadepalli (eds.), ILP, Lecture notes in computer science (Vol. 4894, pp. 147–160). Springer.

  • Motik, B. (2006). Reasoning in description logics using resolution and deductive databases. Ph.D. thesis, Univesitat Karlsruhe (TH), Karlsruhe, Germany.

  • Nienhuys-Cheng, S.H. (1997). Distance between Herbrand interpretations. A measure for approximations to a target concept. Springer.

  • Ontañón, S., & Plaza, E. (2009). On similarity measures based on a refinement lattice. in: D. Wilson, L. McGinty (eds.) Proceedings of ICCBR-2009, no. 5650 in lecture notes in artificial intelligence (pp. 240–255). Springer-Verlag.

  • Ontanón, S., & Plaza, E. (2012). Similarity measures over refinement graphs. Machine Learning, 87, 57–92.

    Article  MathSciNet  MATH  Google Scholar 

  • Parsia, B., Halaschek-Wiener, C., & Sirin, E. (2006). Towards incremental reasoning through updates in OWL-DL. In: Reasoning on the web workshop-WWW2006. Edinburgh.

  • Ramon, J. (2002). Clustering and instance based learning in first order logic. Ph.D. thesis, Ph. D. Thesis, KU Leuven.

  • Raymond, J.W., Blankley, C.J., & Willett, P. (2003). Comparison of chemical clustering methods using graph- and fingerprint-based similarity measures. Journal of Molecular Graphics and Modelling, 21(5), 421–433.

    Article  Google Scholar 

  • Raymond, J.W., Gardiner, E.J., & Willett, P. (2002). Rascal: calculation of graph similarity using maximum common edge subgraphs. Computer Journal, 45(6), 631–644.

    Article  MATH  Google Scholar 

  • Resnik, P. (1995). Using information content to evaluate semantic similarity in a taxonomy. arXiv:cmp-lg/9511007.

  • Rouveirol, C. (1994). Flattening and saturation: two representation changes for generalization. Machine Learning, 14(2), 219–232.

    Article  MATH  Google Scholar 

  • Sánchez-Ruiz-Granados, A.A., González-Calero, P.A., & Díaz-Agudo, B. (2009). Abstraction in knowledge-rich models for case-based planning. In: Case-based reasoning research and development, proc. 8th ICCBR, lecture notes in computer science (Vol. 5650, pp. 313–327). Springer.

  • Sánchez-Ruiz-Granados, A.A., Ontañón, S., González-Calero, P.A., & Plaza, E. (2011). Measuring similarity in description logics using refinement operators. In: ICCBR (pp. 289–303).

  • Ullman, J.D. (2000). Information integration using logical views. Theoretical Computer Science, 239(2), 189–210.

    Article  MathSciNet  MATH  Google Scholar 

  • Willett, P., Barnard, J.M., & Downs, G.M. (1998). Chemical similarity searching. Journal of Chemical Information and Computer Sciences, 38(6), 983–996.

    Article  Google Scholar 

Download references

Acknowledgments

This research has been partially supported by the Spanish Government projects Cognitio (TIN2012-38450-C03-03) and PerSO (TIN2014-55006-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio A. Sánchez-Ruiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Ruiz, A.A., Ontañón, S., González-Calero, P.A. et al. Measuring similarity of individuals in description logics over the refinement space of conjunctive queries. J Intell Inf Syst 47, 447–467 (2016). https://doi.org/10.1007/s10844-015-0374-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10844-015-0374-3

Keywords

Navigation