Abstract
The vast reduction in the size and power consumption of sensors and CMOS circuitry has led to a focused research effort on the on-board power sources which can replace the batteries. The concern with batteries has been that they must always be charged before use. Similarly, the sensors and data acquisition components in distributed networks require centralized energy sources for their operation. In some applications such as sensors for structural health monitoring in remote locations, geographically inaccessible temperature or humidity sensors, the battery charging or replacement operations can be tedious and expensive. Logically, the emphasis in such cases has been on developing the on-site generators that can transform any available form of energy at the location into electrical energy. Piezoelectric energy harvesting has emerged as one of the prime methods for transforming mechanical energy into electric energy. This review article provides a comprehensive coverage of the recent developments in the area of piezoelectric energy harvesting using low profile transducers and provides the results for various energy harvesting prototype devices. A brief discussion is also presented on the selection of the piezoelectric materials for on and off resonance applications. Analytical models reported in literature to describe the efficiency and power magnitude of the energy harvesting process are analyzed.
Similar content being viewed by others
Notes
Data for commercial polycrystalline piezoelectric ceramic compositions: EDO Corporation (EC-98: d 33.g 33 = 11,388 × 10−15 m2/N, g 33 = 15.6 × 10−3 m2/C, and n = 1.249); EDO Corporation (EC-65: d 33.g 33 = 9,500 × 10−15 m2/N, g 33 = 25 × 10−3 m2/C, and n = 1.205); Fuji Ceramics Corporation (C-8 : d 33.g 33 = 12,351 × 10−15 m2/N, g 33 = 19.7 × 10−3 m2/C, and n = 1.225); Morgan Electroceramics (PZT-507 : d 33.g 33 = 14,000 × 10−15 m2/N, g 33 = 20 × 10−3 m2/C, and n = 1.226); Morgan Electroceramics (PZT 701 : d 33.g 33 = 6,273 × 10−15 m2/N, g 33 = 41 × 10−3 m2/C, and n = 1.165); APC International (APC 855 : d 33.g 33 = 12,600 × 10−15 m2/N, g 33 = 21 × 10−3 m2/C, and n = 1.223); APC International (APC 850 : d 33.g 33 = 10,400 × 10−15 m2/N, g 33 = 26 × 10−3 m2/C, and n = 1.203); Channel Industries (5600 Navy: d 33.g 33 = 11,110 × 10−15 m2/N, g 33 = 22 × 10−3 m2/C, and n = 1.217); Channel Industries (5400 Navy: d 33.g 33 = 7,830 × 10−15 m2/N, g 33 = 26.1 × 10−3 m2/C, and n = 1.199); Ferroperm (Pz24: d 33.g 33 = 10,260 × 10−15 m2/N, g 33 = 54 × 10−3 m2/C, and n = 1.150); DongIl (D211: d 33.g 33 = 8,820 × 10−15 m2/N, g 33 = 42 × 10−3 m2/C, and n = 1.166).
Thunder—Face International Corp., Norfolk, VA. ; AFC—Advanced Cerametrics Inc., Lambertville, NJ; MFC—Smart Materials Corp., Sarasota, FL; RFD—NASA Langley Research Center, Hampton, VA; QuickPack—Mide Technology, Medford, MA; Bimorphs—APC International, Mackeyville, PA.
See footnote 2.
References
J.L. Gonzalez, A. Rubio, F. Moll, Int. J. Soc. Mater. Eng. Resour. 10(1), 34–40 (2002)
J.M. Rabaey, M.J. Ammer, J.L. da Silva, D. Patel, S. Roundy, IEEE Computer 33, 42 (2000)
B. Gates, The Economist, Special Issue: The World in 2003, December, 99 (2002)
Hitachi, Hitachi unveils smallest RFID chip, RFID Journal, March 14, (2003)
T. Douseki, et al., in ISSCC Digest of Technical Papers, 84 (1996)
T. Ieki, et al., in Proceedings of IEICE, September, 39 (1996)
S. Roundy, P.K. Wright, J.M. Rabaey, Energy Scavenging for Wireless Sensor Networks (Kluwer, Boston, 2004)
E.H. Calaway Jr., Wireless Sensor Networks (Auerbach, NY, 2004)
S. Roundy, E.S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J.M. Rabaey, P.K. Wright, V. Sundararajan, Improving power output for vibration-based energy scavengers, Pervasive Computing, January–March, 28–36 (2005)
V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, M.B. Srivastava, in IEEE International Symposium on Information Processing in Sensor Networks (IPSN), April 2005. (TR-UCLA-NESL-200503-10)
M. Rahimi, H. Shah, G.S. Sukhatme, in Proceedings of IEEE International Conference on Robotics and Automation, Taipei, Taiwan, 14–19 Sept. 2003, pp. 19–24
J. Paradiso, T. Starner, Energy scavenging for mobile and wireless electronics, Pervasive Computing, January–March, 18–27 (2005)
S. Roundy, P.K. Wright, J. Rabaey, Comput. Commun. 26(11), 1131–1144 (2003)
T. Starner, J.A. Paradiso, in Low-power Electronics Design, ed. by C. Piguet (CRC, 2004), Chapter 45, pp. 1–35
G.K. Ottman, H.F. Hofmann, A.C. Bhatt, G.A. Lesieture, IEEE Trans. Power Electron. 17(5), 669–676 (2002)
C.B. Williams, R.B. Yates, in The 8th International Conference on Solid-state Sensors and Actuators, and Eurosensors IX, Stockholm, Sweden, 25–29 June (1995) pp. 369–372
C.B. Williams, C. Sherwood, M.A. Harradine, P.H. Mellor, T.S. Birch, R.B. Yates, IEE Proc., Circ. Devices Syst. 148(6) 337–342 (2001)
H.W. Kim, Ph.D. dissertation, The Pennsylvania State University, University Park, PA, 2006
S. Priya, Appl. Phys. Lett. 87 184101 (2005)
K. Uchino, Ferroelectric Devices (Marcel Dekker, New York, 2000), p. 169
APC International, Piezoelectric ceramics: principles and applications Mackeyville, ISBN 0-9718744-0-9, PA, USA, (2002)
K. Sato, K. Okamoto, Y. Fuda, T. Yoshida, Jpn. J. Appl. Phys. 33, 5378–5380 (1994)
M. Umeda, K. Nakamura, S. Ueha, Jpn. J. Appl. Phys. 35(5B) 3267–3273 (1996)
M. Umeda, K. Nakamura, S. Ueha, Jpn. J. Appl. Phys. 36(5B) 3146–3151 (1997)
H.A. Sodano, D.J. Inman, G. Park, Shock Vibr. Dig. 36(3), 197–205 (2004)
H.A. Sodano, G. Park, D.J. Inman, Strain 40, 49–58 (2004)
M. Goldfarb, L.D. Jones, Trans. ASME, J. Dyn. Syst. Meas. Control 121 566–571 (1999)
T. Funasaka, M. Furuhata, Y. Hashimoto, K. Nakamura, Proc. IEEE Ultrasonics Symposium 1, 959–962 (1998)
C.D. Richards, M.J. Anderson, D.F. Bahr, R.F. Richards, J. Micromechanics Microengineering 14, 717–721 (2004)
F. Yamauchi, M. Takahashi, J. Phys. Soc. Jpn. 28(Suppl.) 313 (1970)
R. Islam, S. Priya, Appl. Phys. Lett. 88, 032903 (2006)
R. Islam, S. Priya, J. Am. Ceram. Soc. 89(10), 3147–3156 (2006)
T.T. Wang, J.M. Herbert, A.M. Glass (ed.), The Applications of Ferroelectric Polymers (Chapman and Hall, NY, 1988)
From the catalog of Microfine Materials Technologies Ltd. available at http://www.microfine-piezo.com
I.W. Chen, X.H. Wang, Nature 404, 168 (2002)
K. Mossi, Z. Ounaies, B. Ball, Smith, in Proceedings of the SPIE, Smart Structures and Materials, San Diego, CA, vol. 5053, (2003) pp. 423–435
S. Leschin, R.B. Cass, F. Mohammadi, in UTA Workshop on Energy Harvesting, 27 January 2006
Application notes: http://www.advancedcerametrics.com
Application notes: http://www.smart-material.com
T. Daue, in UTA Workshop on Energy Harvesting, 27 January (2006)
S.W. Arms, C.P. Townsend, D.L. Churchill, J.H. Galbreath, S.W. Mundell, in UTA Workshop on Energy Harvesting, 27 January (2006)
R.G. Bryant, R.T. Effinger IV, I. Aranda Jr., B.M. Copeland Jr., E.W. Covington III, in Proceedings of SPIE, Smart Structures and Materials—Active Materials: Behavior and Mechanics, Paper 4699-40, San Diego, CA, (2002)
G.A. Lesieture, G.K. Ottman, H.F. Hofmann, J. Sound Vib. 269, 991–1001 (2004)
A.G. Davenport, M. Novak, in Shock and Vibration Handbook, ed. by C.M. Harris (McGraw-Hill, NY, 1988)
S. Priya, C. Chen, D. Fye, J. Zhand, Jpn. J. Appl. Phys. 44, 104 (2004)
C. Chen, R. Islam, S. Priya, IEEE Trans. Ultrason. Ferroelec. Freq. Control 53(3), 656–661 (2006)
H. Kim, A. Batra, S. Priya, K. Uchino, R. E. Newnham, D. Markeley, H.F. Hofmann, Jpn. J. Appl. Phys. 43(9A) 6178 (2004)
H. Kim, S. Priya, K. Uchino, R.E. Newnham, J. Electroceram. 15, 27–34 (2005)
G.W. Taylor, J.R. Burns, S.M. Kammann, W.B. Powers, T.R. Welsh, IEEE J. Oceanic Eng. 26, 539–547 (2001)
Q.X. Chen, D.A. Payne, Meas. Sci. Technol. 6, 249–267 (1995)
C.M. Wang, M.C. Kao, Y.C. Chen, Y.H. Lai, Jpn. J. Appl. Phys. 42, 170 (2003)
H. Kawai, Jpn. J. Appl. Phys. 8, 975–976 (1969)
T.T. Wang, J.M. Herbert, A.M. Glass (ed.), The Applications of Ferroelectric Polymers (Chapman and Hall, NY, 1988)
M. Benz, W.B. Euler, J. Appl. Polym. Sci. 89, 1093 (2003)
J.W. Sohn, S.B. Choi, D.Y. Lee, Part C: J. Mech. Eng. Sci., 429–436 (2005)
J.T. Cain, W.W. Clark, D. Ulinski, M.H. Mickle, Int. J. Parallel Distrib. Syst. Netw. 4, 140–149 (2001)
P. Niu, P. Chapman, R. Riemer, and X. Zhang, in 35th Annual IEE Power Electronics Specialists Conference, Aachen, Germany (2004)
Q.M. Zhang, J. Schienbeim, Electric EAP, in Electroactive Polymer (EAP) Actuators as Artificial Muscles, 2nd edn., ed. by Y. Bar-Cohen (SPIE, Bellingham, WA 2004), pp. 95–150
Y. Liu, K.L. Ren, H.F. Hofmann, Q. Zhang, IEEE Trans. Ultrason. Ferroelec. Freq. Control. 52(12), 2411–2417 (2005)
D. Guyomar, A. Badel, E. Lefeuvre, C. Richard, IEEE Trans. Ultrason. Ferroelec. Freq. Control 52(4), 584–595 (2005)
S. Priya, D. Popa, F. Lewis, in 2006 ASME International Mechanical Engineering Congress & Exposition, Chicago, IL, 5–10 November 2006
H. Lee, P.K.T. Mok, W.H. Ki, in Proceedings of IEEE International Symposium on Circuits and Systems, Geneva, Switzerland, May 2000, vol. I, (2000), pp. 256–259
R. Amirtharajah, A.P. Chandrakasan, IEEE J. Solid-State Circuits 33, 687–695 (1998)
B.H. Calhoun, D.C. Daly, N. Verma, D.F. Finchelstein, D.D. Wentzloff, A. Wang, S-H. Cho, A.P. Chandrakasan, IEEE Trans. Comput. 54, 727–740 (2005)
N. Hama, A. Yajima, Y. Yoshida, F. Utsunomiya, J. Kodate, T. Tsukahara, T. Douseki, in 2002 Symposium on VLSI, Circuits Digest of Technical Papers, Paper 20.2, 280–283 (2002)
P.M. Lin, L.O. Chua, IEEE Trans. Circuits Syst. CAS-24, 517–530 (1977)
J. Siebert, J. Collier, R. Amirtharajah, in ISLPED’05, August 9–10 (San Diego, California, 2005), pp. 315–318
S. Roundy, P. Wright, J. Rabaey, Comput. Commun. 26, 1131–1144 (2003)
J. Rabaey, A. Chandrakasan, B. Nikolic, Digital Integrated Circuits: A Design Perspective, 2nd edn. (Prentice-Hall, Upper Saddle River, NJ, 2003)
F. Lu, H.P. Lee, S.P. Lim, Smart Mater. Struct. 13, 57–63 (2004)
H.-B. Fang, J.-Q. Liu, Z.-Y. Xu, L. Dong, D. Chen, B.-C. Cai, Y. Liu, Chin. Phys. Lett. 23, 732–734 (2006)
Y.B. Jeon, R. Sood, J.-H. Jeong, S.-G. Kim, Sens. Actuators A 122, 16–22 (2005)
M.J. Ramsay, W.W. Clark, Proc. SPIE 4332, 429–438 (2001)
R. Sood, Y.B. Jeon, J.H. Jeong, S.G. Kim, in Tech. Digest 2004 Solid State Sensor Actuator Workshop, Hilton Head, South Carolina, 2004
S. Kim, W.W. Clark, Q.-M. Wang, Proc. SPIE 5055, 307–318 (2003)
Acknowledgement
The author is grateful for the support from Texas ARP grant 003656-0010-2006.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Priya, S. Advances in energy harvesting using low profile piezoelectric transducers. J Electroceram 19, 167–184 (2007). https://doi.org/10.1007/s10832-007-9043-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10832-007-9043-4