Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Advances in energy harvesting using low profile piezoelectric transducers

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The vast reduction in the size and power consumption of sensors and CMOS circuitry has led to a focused research effort on the on-board power sources which can replace the batteries. The concern with batteries has been that they must always be charged before use. Similarly, the sensors and data acquisition components in distributed networks require centralized energy sources for their operation. In some applications such as sensors for structural health monitoring in remote locations, geographically inaccessible temperature or humidity sensors, the battery charging or replacement operations can be tedious and expensive. Logically, the emphasis in such cases has been on developing the on-site generators that can transform any available form of energy at the location into electrical energy. Piezoelectric energy harvesting has emerged as one of the prime methods for transforming mechanical energy into electric energy. This review article provides a comprehensive coverage of the recent developments in the area of piezoelectric energy harvesting using low profile transducers and provides the results for various energy harvesting prototype devices. A brief discussion is also presented on the selection of the piezoelectric materials for on and off resonance applications. Analytical models reported in literature to describe the efficiency and power magnitude of the energy harvesting process are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. Data for commercial polycrystalline piezoelectric ceramic compositions: EDO Corporation (EC-98: d 33.g 33 = 11,388 × 10−15 m2/N, g 33 = 15.6 ×  10−3 m2/C, and n = 1.249); EDO Corporation (EC-65: d 33.g 33 = 9,500 × 10−15 m2/N, g 33 = 25 × 10−3 m2/C, and n = 1.205); Fuji Ceramics Corporation (C-8 : d 33.g 33 = 12,351 × 10−15 m2/N, g 33 = 19.7 × 10−3 m2/C, and n = 1.225); Morgan Electroceramics (PZT-507 : d 33.g 33 = 14,000 × 10−15 m2/N, g 33 = 20 × 10−3 m2/C, and n = 1.226); Morgan Electroceramics (PZT 701 : d 33.g 33 = 6,273 × 10−15 m2/N, g 33 = 41 × 10−3 m2/C, and n = 1.165); APC International (APC 855 : d 33.g 33 = 12,600 × 10−15 m2/N, g 33 = 21 × 10−3 m2/C, and n = 1.223); APC International (APC 850 : d 33.g 33 = 10,400 × 10−15 m2/N, g 33 = 26 × 10−3 m2/C, and n = 1.203); Channel Industries (5600 Navy: d 33.g 33 = 11,110 × 10−15 m2/N, g 33 = 22 × 10−3 m2/C, and n = 1.217); Channel Industries (5400 Navy: d 33.g 33 = 7,830 × 10−15 m2/N, g 33 = 26.1 × 10−3 m2/C, and n = 1.199); Ferroperm (Pz24: d 33.g 33 = 10,260 × 10−15 m2/N, g 33 = 54 × 10−3 m2/C, and n = 1.150); DongIl (D211: d 33.g 33 = 8,820 × 10−15 m2/N, g 33 = 42 × 10−3 m2/C, and n = 1.166).

  2. Thunder—Face International Corp., Norfolk, VA. ; AFC—Advanced Cerametrics Inc., Lambertville, NJ; MFC—Smart Materials Corp., Sarasota, FL; RFD—NASA Langley Research Center, Hampton, VA; QuickPack—Mide Technology, Medford, MA; Bimorphs—APC International, Mackeyville, PA.

  3. See footnote 2.

References

  1. J.L. Gonzalez, A. Rubio, F. Moll, Int. J. Soc. Mater. Eng. Resour. 10(1), 34–40 (2002)

    Google Scholar 

  2. J.M. Rabaey, M.J. Ammer, J.L. da Silva, D. Patel, S. Roundy, IEEE Computer 33, 42 (2000)

    Google Scholar 

  3. B. Gates, The Economist, Special Issue: The World in 2003, December, 99 (2002)

  4. Hitachi, Hitachi unveils smallest RFID chip, RFID Journal, March 14, (2003)

  5. T. Douseki, et al., in ISSCC Digest of Technical Papers, 84 (1996)

  6. T. Ieki, et al., in Proceedings of IEICE, September, 39 (1996)

  7. S. Roundy, P.K. Wright, J.M. Rabaey, Energy Scavenging for Wireless Sensor Networks (Kluwer, Boston, 2004)

    Google Scholar 

  8. E.H. Calaway Jr., Wireless Sensor Networks (Auerbach, NY, 2004)

    Google Scholar 

  9. S. Roundy, E.S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J.M. Rabaey, P.K. Wright, V. Sundararajan, Improving power output for vibration-based energy scavengers, Pervasive Computing, January–March, 28–36 (2005)

  10. V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, M.B. Srivastava, in IEEE International Symposium on Information Processing in Sensor Networks (IPSN), April 2005. (TR-UCLA-NESL-200503-10)

  11. M. Rahimi, H. Shah, G.S. Sukhatme, in Proceedings of IEEE International Conference on Robotics and Automation, Taipei, Taiwan, 14–19 Sept. 2003, pp. 19–24

  12. J. Paradiso, T. Starner, Energy scavenging for mobile and wireless electronics, Pervasive Computing, January–March, 18–27 (2005)

  13. S. Roundy, P.K. Wright, J. Rabaey, Comput. Commun. 26(11), 1131–1144 (2003)

    Article  Google Scholar 

  14. T. Starner, J.A. Paradiso, in Low-power Electronics Design, ed. by C. Piguet (CRC, 2004), Chapter 45, pp. 1–35

  15. G.K. Ottman, H.F. Hofmann, A.C. Bhatt, G.A. Lesieture, IEEE Trans. Power Electron. 17(5), 669–676 (2002)

    Article  Google Scholar 

  16. C.B. Williams, R.B. Yates, in The 8th International Conference on Solid-state Sensors and Actuators, and Eurosensors IX, Stockholm, Sweden, 25–29 June (1995) pp. 369–372

  17. C.B. Williams, C. Sherwood, M.A. Harradine, P.H. Mellor, T.S. Birch, R.B. Yates, IEE Proc., Circ. Devices Syst. 148(6) 337–342 (2001)

    Article  Google Scholar 

  18. H.W. Kim, Ph.D. dissertation, The Pennsylvania State University, University Park, PA, 2006

  19. S. Priya, Appl. Phys. Lett. 87 184101 (2005)

    Article  CAS  Google Scholar 

  20. K. Uchino, Ferroelectric Devices (Marcel Dekker, New York, 2000), p. 169

  21. APC International, Piezoelectric ceramics: principles and applications Mackeyville, ISBN 0-9718744-0-9, PA, USA, (2002)

  22. K. Sato, K. Okamoto, Y. Fuda, T. Yoshida, Jpn. J. Appl. Phys. 33, 5378–5380 (1994)

    Article  CAS  Google Scholar 

  23. M. Umeda, K. Nakamura, S. Ueha, Jpn. J. Appl. Phys. 35(5B) 3267–3273 (1996)

    Article  CAS  Google Scholar 

  24. M. Umeda, K. Nakamura, S. Ueha, Jpn. J. Appl. Phys. 36(5B) 3146–3151 (1997)

    Article  CAS  Google Scholar 

  25. H.A. Sodano, D.J. Inman, G. Park, Shock Vibr. Dig. 36(3), 197–205 (2004)

    Article  Google Scholar 

  26. H.A. Sodano, G. Park, D.J. Inman, Strain 40, 49–58 (2004)

    Article  Google Scholar 

  27. M. Goldfarb, L.D. Jones, Trans. ASME, J. Dyn. Syst. Meas. Control 121 566–571 (1999)

    Article  Google Scholar 

  28. T. Funasaka, M. Furuhata, Y. Hashimoto, K. Nakamura, Proc. IEEE Ultrasonics Symposium 1, 959–962 (1998)

    Google Scholar 

  29. C.D. Richards, M.J. Anderson, D.F. Bahr, R.F. Richards, J. Micromechanics Microengineering 14, 717–721 (2004)

    Article  CAS  Google Scholar 

  30. F. Yamauchi, M. Takahashi, J. Phys. Soc. Jpn. 28(Suppl.) 313 (1970)

    Google Scholar 

  31. R. Islam, S. Priya, Appl. Phys. Lett. 88, 032903 (2006)

    Article  CAS  Google Scholar 

  32. R. Islam, S. Priya, J. Am. Ceram. Soc. 89(10), 3147–3156 (2006)

    Article  CAS  Google Scholar 

  33. T.T. Wang, J.M. Herbert, A.M. Glass (ed.), The Applications of Ferroelectric Polymers (Chapman and Hall, NY, 1988)

  34. From the catalog of Microfine Materials Technologies Ltd. available at http://www.microfine-piezo.com

  35. I.W. Chen, X.H. Wang, Nature 404, 168 (2002)

    Article  CAS  Google Scholar 

  36. K. Mossi, Z. Ounaies, B. Ball, Smith, in Proceedings of the SPIE, Smart Structures and Materials, San Diego, CA, vol. 5053, (2003) pp. 423–435

  37. S. Leschin, R.B. Cass, F. Mohammadi, in UTA Workshop on Energy Harvesting, 27 January 2006

  38. Application notes: http://www.advancedcerametrics.com

  39. Application notes: http://www.smart-material.com

  40. T. Daue, in UTA Workshop on Energy Harvesting, 27 January (2006)

  41. S.W. Arms, C.P. Townsend, D.L. Churchill, J.H. Galbreath, S.W. Mundell, in UTA Workshop on Energy Harvesting, 27 January (2006)

  42. R.G. Bryant, R.T. Effinger IV, I. Aranda Jr., B.M. Copeland Jr., E.W. Covington III, in Proceedings of SPIE, Smart Structures and Materials—Active Materials: Behavior and Mechanics, Paper 4699-40, San Diego, CA, (2002)

  43. G.A. Lesieture, G.K. Ottman, H.F. Hofmann, J. Sound Vib. 269, 991–1001 (2004)

    Article  Google Scholar 

  44. A.G. Davenport, M. Novak, in Shock and Vibration Handbook, ed. by C.M. Harris (McGraw-Hill, NY, 1988)

    Google Scholar 

  45. S. Priya, C. Chen, D. Fye, J. Zhand, Jpn. J. Appl. Phys. 44, 104 (2004)

    Article  CAS  Google Scholar 

  46. C. Chen, R. Islam, S. Priya, IEEE Trans. Ultrason. Ferroelec. Freq. Control 53(3), 656–661 (2006)

    Article  Google Scholar 

  47. H. Kim, A. Batra, S. Priya, K. Uchino, R. E. Newnham, D. Markeley, H.F. Hofmann, Jpn. J. Appl. Phys. 43(9A) 6178 (2004)

    Article  CAS  Google Scholar 

  48. H. Kim, S. Priya, K. Uchino, R.E. Newnham, J. Electroceram. 15, 27–34 (2005)

    Article  Google Scholar 

  49. G.W. Taylor, J.R. Burns, S.M. Kammann, W.B. Powers, T.R. Welsh, IEEE J. Oceanic Eng. 26, 539–547 (2001)

    Article  Google Scholar 

  50. Q.X. Chen, D.A. Payne, Meas. Sci. Technol. 6, 249–267 (1995)

    Article  CAS  Google Scholar 

  51. C.M. Wang, M.C. Kao, Y.C. Chen, Y.H. Lai, Jpn. J. Appl. Phys. 42, 170 (2003)

    Article  CAS  Google Scholar 

  52. H. Kawai, Jpn. J. Appl. Phys. 8, 975–976 (1969)

    Article  CAS  Google Scholar 

  53. T.T. Wang, J.M. Herbert, A.M. Glass (ed.), The Applications of Ferroelectric Polymers (Chapman and Hall, NY, 1988)

  54. M. Benz, W.B. Euler, J. Appl. Polym. Sci. 89, 1093 (2003)

    Article  CAS  Google Scholar 

  55. J.W. Sohn, S.B. Choi, D.Y. Lee, Part C: J. Mech. Eng. Sci., 429–436 (2005)

  56. J.T. Cain, W.W. Clark, D. Ulinski, M.H. Mickle, Int. J. Parallel Distrib. Syst. Netw. 4, 140–149 (2001)

    Google Scholar 

  57. P. Niu, P. Chapman, R. Riemer, and X. Zhang, in 35th Annual IEE Power Electronics Specialists Conference, Aachen, Germany (2004)

  58. Q.M. Zhang, J. Schienbeim, Electric EAP, in Electroactive Polymer (EAP) Actuators as Artificial Muscles, 2nd edn., ed. by Y. Bar-Cohen (SPIE, Bellingham, WA 2004), pp. 95–150

    Google Scholar 

  59. Y. Liu, K.L. Ren, H.F. Hofmann, Q. Zhang, IEEE Trans. Ultrason. Ferroelec. Freq. Control. 52(12), 2411–2417 (2005)

    Article  Google Scholar 

  60. D. Guyomar, A. Badel, E. Lefeuvre, C. Richard, IEEE Trans. Ultrason. Ferroelec. Freq. Control 52(4), 584–595 (2005)

    Article  Google Scholar 

  61. S. Priya, D. Popa, F. Lewis, in 2006 ASME International Mechanical Engineering Congress & Exposition, Chicago, IL, 5–10 November 2006

  62. H. Lee, P.K.T. Mok, W.H. Ki, in Proceedings of IEEE International Symposium on Circuits and Systems, Geneva, Switzerland, May 2000, vol. I, (2000), pp. 256–259

  63. R. Amirtharajah, A.P. Chandrakasan, IEEE J. Solid-State Circuits 33, 687–695 (1998)

    Article  Google Scholar 

  64. B.H. Calhoun, D.C. Daly, N. Verma, D.F. Finchelstein, D.D. Wentzloff, A. Wang, S-H. Cho, A.P. Chandrakasan, IEEE Trans. Comput. 54, 727–740 (2005)

    Article  Google Scholar 

  65. N. Hama, A. Yajima, Y. Yoshida, F. Utsunomiya, J. Kodate, T. Tsukahara, T. Douseki, in 2002 Symposium on VLSI, Circuits Digest of Technical Papers, Paper 20.2, 280–283 (2002)

  66. P.M. Lin, L.O. Chua, IEEE Trans. Circuits Syst. CAS-24, 517–530 (1977)

    Article  Google Scholar 

  67. J. Siebert, J. Collier, R. Amirtharajah, in ISLPED’05, August 9–10 (San Diego, California, 2005), pp. 315–318

  68. S. Roundy, P. Wright, J. Rabaey, Comput. Commun. 26, 1131–1144 (2003)

    Article  Google Scholar 

  69. J. Rabaey, A. Chandrakasan, B. Nikolic, Digital Integrated Circuits: A Design Perspective, 2nd edn. (Prentice-Hall, Upper Saddle River, NJ, 2003)

    Google Scholar 

  70. F. Lu, H.P. Lee, S.P. Lim, Smart Mater. Struct. 13, 57–63 (2004)

    Article  Google Scholar 

  71. H.-B. Fang, J.-Q. Liu, Z.-Y. Xu, L. Dong, D. Chen, B.-C. Cai, Y. Liu, Chin. Phys. Lett. 23, 732–734 (2006)

    Article  CAS  Google Scholar 

  72. Y.B. Jeon, R. Sood, J.-H. Jeong, S.-G. Kim, Sens. Actuators A 122, 16–22 (2005)

    Article  CAS  Google Scholar 

  73. M.J. Ramsay, W.W. Clark, Proc. SPIE 4332, 429–438 (2001)

    Article  Google Scholar 

  74. R. Sood, Y.B. Jeon, J.H. Jeong, S.G. Kim, in Tech. Digest 2004 Solid State Sensor Actuator Workshop, Hilton Head, South Carolina, 2004

  75. S. Kim, W.W. Clark, Q.-M. Wang, Proc. SPIE 5055, 307–318 (2003)

    Article  Google Scholar 

Download references

Acknowledgement

The author is grateful for the support from Texas ARP grant 003656-0010-2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashank Priya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Priya, S. Advances in energy harvesting using low profile piezoelectric transducers. J Electroceram 19, 167–184 (2007). https://doi.org/10.1007/s10832-007-9043-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-007-9043-4

Keywords

Navigation