Abstract
Peptide-protein interactions are ubiquitous in living cells and essential to a wide range of biological processes, as well as pathologies such as cancer or cardiovascular disease. Yet, obtaining reliable binding mode predictions in peptide-protein docking remains a great challenge for most computational docking programs. The main goal of this study was to assess the performance of the small molecule docking program rDock in comparison to other widely used small molecule docking programs, using 100 peptide-protein systems with peptides ranging from 2 to 12 residues. As we used two large independent benchmark sets previously published for other small-molecule docking programs (AutoDockVina benchmark and LEADSPEP), the performance of rDock could directly be compared to the performances of AutoDockVina, Surflex, GOLD, and Glide, as well as to the peptide docking protocol PIPER-FlexPepDock and the webserver HPepDock. Our benchmark reveals that rDock can dock the 100 peptides with an overall backbone RMSD below 2.5 Å in 58.5% of the cases (76% for the 47 systems of the AutoDockVina benchmark set and 43% for the 53 systems of the LEADSPEP benchmark set). More specifically, rDock docks up to 11-residue peptides with a backbone RMSD below 2.5 Å in 60.75% of the cases. rDock displays higher accuracy than most available small molecule docking programs for 6–10-residue peptides and can sometimes perform similarly to the peptide docking tool, especially at a high level of exhaustiveness (100 or 150 runs). Its performance, as is the case for many other unguided small molecule docking tools, is compromised when the peptides adopt secondary structures upon binding. However, our analyses suggest that rDock could be used for predicting how medium-sized biologically relevant peptides bind to their respective protein targets when the latter bind in an extended mode.
Similar content being viewed by others
References
Petsalaki E, Russell RB (2008) Curr Opin Biotechnol 19(4):344
Neduva V, Linding R, Su-Angrand I, Stark A, de Masi F, Gibson TJ, Lewis J, Serrano L, Russell RB (2005) PLoS Biol 3(12):e405
Andrews SJ, Rothnagel JA (2014) Nat Rev Genet 15(3):193
London N, Movshovitz-Attias D, Schueler-Furman O (2010) Structure 18(2):188
Craik DJ, Fairlie DP, Liras S, Price D (2013) Chem Biol Drug Des 81(1):136
Sood VD, Baker D (2006) J Mol Biol 357(3):917
Dangel A, Ackermann N, Abdel-Hadi O, Maier R, Onder K, Francois P, Muller CW, Pane-Farre J, Engelmann S, Schrenzel J, Heesemann J, Lindermayr C (2013) FASEB J 27(11):4476
Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M (2010) Drug Discov Today 15(1–2):40
Xu X, Huang M, Zou X (2018) Biophys Rep 4(1):1
Gaieb Z, Liu S, Gathiaka S, Chiu M, Yang H, Shao C, Feher VA, Walters WP, Kuhn B, Rudolph MG, Burley SK, Gilson MK, Amaro RE (2018) J Comput Aided Mol Des 32(1):1
Cross JB, Thompson DC, Rai BK, Baber JC, Fan KY, Hu Y, Humblet C (2009) J Chem Inf Model 49(6):1455
Ciemny M, Kurcinski M, Kamel K, Kolinski A, Alam N, Schueler-Furman O, Kmiecik S (2018) Drug Discov Today 23(8):1530
Trellet M, Melquiond AS, Bonvin AM (2013) PLoS ONE 8(3):e58769
Ben-Shimon A, Niv MY (2015) Structure 23(5):929
Kurcinski M, Jamroz M, Blaszczyk M, Kolinski A, Kmiecik S (2015) Nucleic Acids Res 43(W1):W419
Peterson LX, Roy A, Christoffer C, Terashi G, Kihara D (2017) PLoS Comput Biol 13(4):e1005485
Schindler CEM, de Vries SJ, Zacharias M (2015) Structure 23(8):1507
Yan C, Xu X, Zou X (2016) Structure 24(10):1842
London N, Raveh B, Cohen E, Fathi G, Schueler-Furman O (2011) Nucleic Acids Res 39(suppl_2):W249
Alam N, Goldstein O, Xia B, Porter KA, Kozakov D, Schueler-Furman O (2017) PLoS Comput Biol 13(12):e1005905
Antes I (2010) Proteins 78(5):1084
Gront D, Kulp DW, Vernon RM, Strauss CE, Baker D (2011) PLoS ONE 6(8):e23294
Kozakov D, Brenke R, Comeau SR, Vajda S (2006) Proteins 65(2):392
Raveh B, London N, Schueler-Furman O (2010) Proteins 78(9):2029
Morris GM, Huey R, Olson AJ (2008) Curr Protoc Bioinf. https://doi.org/10.1002/0471250953.bi0814s24
Trott O, Olson AJ (2010) J Comput Chem 31(2):455
Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) J Med Chem 47(7):1739
Repasky MP, Shelley M, Friesner RA (2007) Curr Protoc Bioinf. https://doi.org/10.1002/0471250953.bi0812s18
Hetényi C, van der Spoel D (2009) Protein Sci 11(7):1729
Tubert-Brohman I, Sherman W, Repasky M, Beuming T (2013) J Chem Inf Model 53(7):1689
Rentzsch R, Renard BY (2015) Brief Bioinf 16(6):1045
Hauser AS, Windshugel B (2016) J Chem Inf Model 56(1):188
Jones G, Willett P, Glen RC (1995) J Mol Biol 245(1):43
Jain AN (2003) J Med Chem 46(4):499
Ruiz-Carmona S, Alvarez-Garcia D, Foloppe N, Garmendia-Doval AB, Juhos S, Schmidtke P, Barril X, Hubbard RE, Morley SD (2014) PLoS Comput Biol 10(4):e1003571
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28(1):235
Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) J Comput Aided Mol Des 27(3):221
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25(13):1605
LigPrep (2016) Small-molecule drug discovery suite 2016-4. Schrödinger, LLC, New York
Suhre K, Sanejouand Y-H (2004) Nucleic Acids Res 32(suppl_2):W610
http://rdock.sourceforge.net/wp-content/uploads/2015/08/rDock_User_Guide.pdf
Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, Hartl FU, Moarefi I (2000) Cell 101(2):199
Zhou P, Li B, Yan Y, Jin B, Wang L, Huang SY (2018) J Chem Inf Model 58(6):1292
Cavasotto CN (2012) Methods Mol Biol 819:157
Antunes DA, Moll M, Devaurs D, Jackson KR, Lizee G, Kavraki LE (2017) Cancer Res 77(21):e55
Davis IW, Arendall WB 3rd, Richardson DC, Richardson JS (2006) Structure 14(2):265
Zhou P, Jin B, Li H, Huang SY (2018) Nucleic Acid Res 46(W1):W443
Xu X, Yan C, Zou X (2018) J Comput Chem 39(28):2409
de Vries SJ, Rey J, Schindler CEM, Zacharias M, Tuffery P (2017) Nucleic Acids Res 45(W1):W361
Lee H, Heo L, Lee MS, Seok C (2015) Nucleic Acid Res 43(W1):W431
van Zundert GCP, Rodrigues JPGLM, Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquiond ASJ, van Dijk M, de Vries SJ, Bonvin AMJJ (2016) J Mol Biol 428:720
Acknowledgments
Nostrum Biodiscovery is supported by Fundación Marcelino Botín (Mind the Gap) and CDTI (Neotec grant -EXP 00094141/SNEO-20161127). DS, YW, and RS would like to thank the technical support of the Barcelona Supercomputing Center and the Institute for Research in Biomedicine (IRB Barcelona). Support from Schrödinger is also acknowledged.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Soler, D., Westermaier, Y. & Soliva, R. Extensive benchmark of rDock as a peptide-protein docking tool. J Comput Aided Mol Des 33, 613–626 (2019). https://doi.org/10.1007/s10822-019-00212-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-019-00212-0