Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Statistical analysis of EGFR structures’ performance in virtual screening

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In this work the ability of EGFR structures to distinguish true inhibitors from decoys in docking and MM-PBSA is assessed by statistical procedures. The docking performance depends critically on the receptor conformation and bound state. The enrichment of known inhibitors is well correlated with the difference between EGFR structures rather than the bound-ligand property. The optimal structures for virtual screening can be selected based purely on the complex information. And the mixed combination of distinct EGFR conformations is recommended for ensemble docking. In MM-PBSA, a variety of EGFR structures have identically good performance in the scoring and ranking of known inhibitors, indicating that the choice of the receptor structure has little effect on the screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Damm KL, Carlson HA (2007) Exploring experimental sources of multiple protein conformations in structure-based drug design. J Am Chem Soc 129:8225–8235

    Article  CAS  Google Scholar 

  2. Huang SY, Zou XQ (2007) Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking. Proteins 66:399–421

    Article  CAS  Google Scholar 

  3. Rueda M, Bottegoni G, Abagyan R (2010) Recipes for the selection of experimental protein conformations for virtual screening. J Chem Inf Model 50:186–193

    Article  CAS  Google Scholar 

  4. Li Y, Kim DJ, Ma WY, Lubet RA, Bode AM et al (2011) Discovery of novel checkpoint kinase 1 inhibitors by virtual screening based on multiple crystal structures. J Chem Inf Model 51:2904–2914

    Article  CAS  Google Scholar 

  5. Ben Nasr N, Guillemain H, Lagarde N, Zagury JF, Montes M (2013) Multiple structures for virtual ligand screening: defining binding site properties-based criteria to optimize the selection of the query. J Chem Inf Model 53:293–311

    Article  CAS  Google Scholar 

  6. Wang B, Buchman CD, Li L, Hurley TD, Meroueh SO (2014) Enrichment of chemical libraries docked to protein conformational ensembles and application to aldehyde dehydrogenase 2. J Chem Inf Model 54:2105–2116

    Article  CAS  Google Scholar 

  7. Park JH, Liu Y, Ma Lemmon, Radhakrishnan R (2012) Erlotinib binds both inactive and active conformations of the EGFR tyrosine kinase domain. Biochem J 448:417–423

    Article  CAS  Google Scholar 

  8. Gajiwala KS, Feng JL, Ferre R, Ryan K, Brodsky O et al (2013) Insights into the aberrant activity of mutant EGFR kinase domain and drug recognition. Structure 21:209–219

    Article  CAS  Google Scholar 

  9. Yun CH, Mengwasser KE, Toms AV, Woo MS, Greulich H et al (2008) The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci USA 105:2070–2075

    Article  CAS  Google Scholar 

  10. Li Y, Li X, Ma W, Dong Z (2014) Conformational transition pathways of epidermal growth factor receptor kinase domain from multiple molecular dynamics simulations and Bayesian clustering. J Chem Theory Comput 10:3503–3511

    Article  CAS  Google Scholar 

  11. Wang JM, Morin P, Wang W, Kollman PA (2001) Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J Am Chem Soc 123:5221–5230

    Article  CAS  Google Scholar 

  12. Okimoto N, Futatsugi N, Fuji H, Suenaga A, Morimoto G et al (2009) High-performance drug discovery: computational screening by combining docking and molecular dynamics simulations. PLoS Comput Biol 5:e1000528

    Article  Google Scholar 

  13. Rastelli G, Del Rio A, Degliesposti G, Sgobba M (2010) Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. J Comput Chem 31:797–810

    CAS  Google Scholar 

  14. Homeyer N, Gohlke H (2012) Free energy calculations by the molecular mechanics Poisson–Boltzmann surface area method. Mol Inf 31:114–122

    Article  CAS  Google Scholar 

  15. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10:449–461

    Article  CAS  Google Scholar 

  16. Damm-Ganamet KL, Smith RD, Dunbar JB Jr, Stuckey JA, Carlson HA (2013) CSAR benchmark exercise 2011–2012: evaluation of results from docking and relative ranking of blinded congeneric series. J Chem Inf Model 53:1853–1870

    Article  CAS  Google Scholar 

  17. Stamos J, Sliwkowski MX, Eigenbrot C (2002) Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem 277:46265–46272

    Article  CAS  Google Scholar 

  18. Wood ER, Truesdale AT, McDonald OB, Yuan D, Hassell A et al (2004) A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res 64:6652–6659

    Article  CAS  Google Scholar 

  19. Yoshikawa S, Kukimoto-Niino M, Parker L, Handa N, Terada T et al (2013) Structural basis for the altered drug sensitivities of non-small cell lung cancer-associated mutants of human epidermal growth factor receptor. Oncogene 32:27–38

    Article  CAS  Google Scholar 

  20. Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J (2006) An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125:1137–1149

    Article  CAS  Google Scholar 

  21. Yun CH, Boggon TJ, Li YQ, Woo MS, Greulich H et al (2007) Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell 11:217–227

    Article  CAS  Google Scholar 

  22. Zhang X, Pickin KA, Bose R, Jura N, Cole PA et al (2007) Inhibition of the EGF receptor by binding of MIG6 to an activating kinase domain interface. Nature 450:U713–U741

    Google Scholar 

  23. Xu G, Abad MC, Connolly PJ, Neeper MP, Struble GT et al (2008) 4-amino-6-arylamino-pyrimidine-5-carbaldehyde hydrazones as potent ErbB-2/EGFR dual kinase inhibitors. Bioorg Med Chem Lett 18:4615–4619

    Article  CAS  Google Scholar 

  24. Xu G, Searle LL, Hughes TV, Beck AK, Connolly PJ et al (2008) Discovery of novel 4-amino-6-arylaminopyrimidine-5-carbaldehyde oximes as dual inhibitors of EGFR and ErbB-2 protein tyrosine kinases. Bioorg Med Chem Lett 18:3495–3499

    Article  CAS  Google Scholar 

  25. Jura N, Endres NF, Engel K, Deindl S, Das R et al (2009) Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell 137:1293–1307

    Article  Google Scholar 

  26. Fidanze SD, Erickson SA, Wang GT, Mantei R, Clark RF et al (2010) Imidazo[2,1-b]thiazoles: multitargeted inhibitors of both the insulin-like growth factor receptor and members of the epidermal growth factor family of receptor tyrosine kinases. Bioorg Med Chem Lett 20:2452–2455

    Article  CAS  Google Scholar 

  27. Aertgeerts K, Skene R, Yano J, Sang B-C, Zou H et al (2011) Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein. J Biol Chem 286:18756–18765

    Article  CAS  Google Scholar 

  28. Sogabe S, Kawakita Y, Igaki S, Iwata H, Miki H et al (2013) Structure-based approach for the discovery of pyrrolo[3,2-d]pyrimidine-based EGFR T790M/L858R mutant inhibitors. ACS Med Chem Lett 4:201–205

    Article  CAS  Google Scholar 

  29. Kawakita Y, Seto M, Ohashi T, Tamura T, Yusa T et al (2013) Design and synthesis of novel pyrimido 4,5-b azepine derivatives as HER2/EGFR dual inhibitors. Biorg Med Chem 21:2250–2261

    Article  CAS  Google Scholar 

  30. Peng Y-H, Shiao H-Y, Tu C-H, Liu P-M, Hsu JT-A et al (2013) Protein kinase inhibitor design by targeting the Asp-Phe-Gly (DFG) motif: the role of the DFG motif in the design of epidermal growth factor receptor inhibitors. J Med Chem 56:3889–3903

    Article  CAS  Google Scholar 

  31. Ward RA, Anderton MJ, Ashton S, Bethel PA, Box M et al (2013) Structure- and reactivity-based development of covalent inhibitors of the activating and gatekeeper mutant forms of the epidermal growth factor receptor (EGFR). J Med Chem 56:7025–7048

    Article  CAS  Google Scholar 

  32. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768

    Article  CAS  Google Scholar 

  33. Schrödinger (2014) Maestro, version 9.8. LLC, New York

  34. R. The R project for statistical computing (https://www.r-project.org/)

  35. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM et al (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  CAS  Google Scholar 

  36. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  37. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  38. Salomon-Ferrer R, Götz AW, Poole D, Le Grand S, Walker RC (2013) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J Chem Theory Comput 9:3878–3888

    Article  CAS  Google Scholar 

  39. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  Google Scholar 

  40. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical-integration of cartesian equations of motion of a system with constraints—molecular-dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  41. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H et al (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  42. Miller BR, McGee TD, Swails JM, Homeyer N, Gohlke H et al (2012) MMPBSA.py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8:3314–3321

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The Hormel Foundation and National Institutes of Health Grants CA172457, CA166011 and R37 CA081064.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Li or Zigang Dong.

Ethics declarations

Conflict of interest

None.

Additional information

Yan Li and Xiang Li have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 634 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, X. & Dong, Z. Statistical analysis of EGFR structures’ performance in virtual screening . J Comput Aided Mol Des 29, 1045–1055 (2015). https://doi.org/10.1007/s10822-015-9877-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-015-9877-9

Keywords

Navigation