Abstract
Retinoid X receptors (RXRs) are ligand-controlled transcription factors which heterodimerize with other nuclear receptors to regulate gene transcriptions associated with crucial biological events. 9-cis retinoic acid (9cRA), which transactivates RXRs, is believed to be an endogenous RXR ligand. All-trans retinoic acid (ATRA) is a natural ligand for retinoic acid receptors (RARs), which heterodimerize with RXRs. Although the concentration of 9cRA in tissues is very low, ATRA is relatively abundant and some reports show that ATRA activates RXRs. We computationally studied the possibility of ATRA binding to RXRs using two different docking methods with our developed programs to assess the binding affinities of naturally occurring retinoids. The simulations showed good correlations to the reported binding affinities of these molecules for RXRs and RARs.
Similar content being viewed by others
Abbreviations
- ATRA:
-
All-trans retinoic acid
- 9cRA:
-
9-cis retinoic acid
- 13cRA:
-
13-cis retinoic acid
- RAR:
-
Retinoic acid receptor
- RXR:
-
Retinoid X receptor
References
Tsuji M (2014) Local motifs involved in the canonical structure of the ligand-binding domain in the nuclear receptor superfamily. J Struct Biol 185:355–365
Huang R, Chandra V, Rastinejad F (2014) Retinoid acid actions through mammalian nuclear receptors. Chem Rev 114:233–254
le Maire A, Álvarez S, Shankaranarayanan P, de Lera AR, Bourguet W, Gronemeyer H (2012) Retinoid receptors and therapeutic applications of RAR/RXR modulators. Curr Top Med Chem 12:505–527
Germain P, Chambon P, Eichele G, Evans RM, Lazar MA, Leid M, de Lera AR, Lotan R, Mangelsdorf DJ, Gronemeyer H (2006) International union of pharmacology. LXIII. Retinoid X receptors. Pharmacol Rev 58:760–772
Germain P, Chambon P, Eichele G, Evans RM, Lazar MA, Leid M, de Lera AR, Lotan R, Mangelsdorf DJ, Gronemeyer H (2006) International union of pharmacology. LX. Retinoic acid receptors. Pharmacol Rev 58:712–725
Umemiya H, Fukasawa H, Ebisawa M, Eyrolles L, Kawachi E, Eisenmann G, Gronemeyer H, Hashimoto Y, Shudo K, Kagechika H (1997) Regulation of retinoidal actions by diazepinylbenzoic acids. Retinoid synergists which activate the RXR-RAR heterodimers. J Med Chem 40:4222–4234
Mic DA, Molotkov A, Benbrook DM, Duester G (2003) Retinoid activation of retinoic acid receptor but not retinoid X receptor is sufficient to rescue lethal defect in retinoic acid synthesis. PNAS 100:7135–7140
Radominska-Pandya A, Chen G (2002) Photoaffinity labeling of human retinoid X receptor (RXRβ) with 9-cis-retinoic acid: identification of phytanic acid, docosahexaenoic acid, and lithocholic acid as ligand for RXRβ. Biochemistry 41:4883–4890
Lengqvis J, de Urquiza AM, Bergman AC, Willson TM, Sjövall J, Perlmann T, Griffiths WJ (2004) Polyunsaturated fatty acid including docosahexaenoic acid arachidonic acid bind to the retinoid X receptor α ligand-binding domain. Mol Cell Proteomics 3:692–703
Liu Y, Kagechika H, Ishikawa J, Hirano H, Matsukuma S, Tanaka K, Nakamura S (2008) Effects of retinoic acids on the dendritic morphology of cultured hippocampal neurons. J Neurochem 106:1104–1116
Idres N, Marill J, Flexor MA, Chabot GG (2002) Activation of retinoic acid receptor-dependent transcription by all-trans-retinoic acid metabolites and isomers. J Biol Chem 277:31491–31498
Camacho M, Rodriguez C, Salazar J, Martínez-González J, Ribalta J, Escudero JR, Masana L, Vila L (2008) Retinoic acid induces PGI synthase expression in human endothelial cells. J Lip Res 49:1707–1714
Rühl R, Plum C, Elmazer MMA, Nau H (2001) Embryonic subcellular distribution of 13-cis- and all-trans-retinoic acid indicates differential cytosolic/nuclear localization. Toxicol Sci 63:82–89
Tashima T, Kagechika H, Tsuji M, Fukasawa H, Kawachi E, Hashimoto Y, Shudo K (1997) Polyenylidene thiazolidine derivatives with retinoidal activities. Chem Pharm Bull 45:1805–1813
Ohta K, Tsuji M, Kawachi E, Fukasawa H, Hashimoto Y, Shudo K, Kagechika H (1998) Potent retinoid synergists with a diphenylamine skeleton. Biol Pharm Bull 21:544–546
Iijima T, Endo Y, Tsuji M, Kawachi E, Kagechika H, Shudo K (1999) Dicarba-closo-dodecaboranes as a pharmacophore. Retinoidal antagonists and potential agonists. Chem Pharm Bull 47:398–404
Ebisawa M, Umemiya H, Ohta K, Fukasawa H, Kawachi E, Christoffel G, Gronemeyer H, Tsuji M, Hashimoto Y, Shudo K, Kagechika H (1999) Retinoid X receptor-antagonistic diazepinylbenzoic acids. Chem Pharm Bull 47:1778–1786
Amano Y, Noguchi M, Shudo K (2014) Diarylamines incorporating hexahydrophenalene or octahydrobenzoheptalene as retinoid X receptor (RXR)-specific agonists. Chem Pharm Bull 62:254–259
Amano Y, Noguchi M, Nakagomi M, Muratake H, Fukasawa H, Shudo K (2013) Design, synthesis and evaluation of retinoids with novel bulky hydrophobic partial structures. Bioorg Med Chem 21:4342–4350
Tsuji M (2007) Development of the structure-based drug design system, HMHC and DSHC. Mol Sci 1 NP004
Mangelsdorf DJ, Ong ES, Dyck JA, Evans RM (1990) Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 345:224–229
Allegretto EA, McClurg MR, Lazarchik SB, Clemm DL, Kerner SA, Elgort MG, Boehm MF, White SK, Pike JW, Heyman RA (1993) Transactivation properties of retinoic acid and retinoid X receptors in mammalian cells and yeast. Correlation with hormone binding and effects of metabolism. J Biol Chem 268:26625–26633
Heyman RA, Mangelsdorf DJ, Dyck JA, Stein RB, Eichele G, Evans RM, Thaller C (1992) 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 68:397–406
Kawamura K, Shiohara M, Kanda M, Fujiwara S (2013) Retinoid X receptor-mediated transdifferentiation cascade in budding tunicates. Dev Biol 384:343–355
Mizuguchi Y, Wada A, Nakagawa K, Ito M, Okano T (2006) Antitumoral activity of 13-demethyl or 13-substituted analogues of all-trans retinoic acid and 9-cis retinoic acid in the human myeloid leukemia cell line HL-60. Biol Pharm Bull 29:1803–1809
Schug TT, Berry DC, Shaw NS, Travis SN, Noy N (2007) Dual transcriptional activities underlie opposing effects of retinoic acid on cell survival. Cell 129:723–733
Al Tanoury Z, Piskunov A, Rochette-Egly C (2013) Vitamin A and retinoid signaling: genomic and nongenomic effects. J Lipid Res 54:1761–1775
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucl Acids Res 28:235–242
Gampe RT Jr, Montana VG, Lambert HM, Miller AB, Bledsoe RK, Milburm MV, Kiewer SA, Willson TM, Xu HE (2000) Asymmetry in the PPARγ/RXRα crystal structure reveals the molecular basis of heterodimerization among nuclear receptors. Mol Cell 5:545–555
Svensson S, Östberg T, Jacobsson M, Norström C, Stefansson K, Hallén D, Johansson IC, Zachrisson K, Ogg D, Jendeberg L (2003) Crystal structure of the heterodimeric complex of LXRα and RXRβ ligand-binding domain in a fully agonistic conformation. EMBO J 22:4625–4633
Sato Y, Ramalanjaona N, Huet T, Osz J, Antony P, Peluso-lltis C, Poussin-Courrmontagne P, Ennifar E, Mély Y, Dejaegere A, Moras D, Rochel N (2010) The “phantom effect” of the rexinoid LG100754: structural and functional insights. PLoS ONE 5:e15119
Osz J, Brélivet Y, Peluso-lltis C, Cura V, Eiler S, Ruff M, Bourguet W, Rochel N, Moras D (2012) Structural basis for a molecular allosteric control mechanism of cofactor binding to nuclear receptors. Proc Natl Acad Sci USA 109:588–589
Renaud JP, Rochel N, Ruff M, Vivat V, Chambon P, Gronemeyer H, Moras D (1995) Crystal structure of the RAR-γ ligand-binding domain bound to all-trans retinoic acid. Nature 378:681–689
Tsuji M (2015) Homology Modeling Professional for HyperChem, revision G1, Institute of Molecular Function, Saitama, Japan
Tsuji M (2006) Seitaikoubunnsi Niokeru Sougosayoubui No Yosokuhouhou. Patent 2007-299125
Tsuji M (2015) Docking Study with HyperChem, revision G1, Institute of Molecular Function, Saitama, Japan
Autodock Vina, version 1.1.2, Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461
myPresto, version 4.306, Fukunishi Y, Mikami Y, Nakamura H (2005) Similarity among receptor pockets and among compounds: analysis and application to in silico ligand screening. J Mol Graph Model 24:34–45
Gaddipati R, Raikundalia GK, Mathai ML (2014) Comparison of AutoDock and Glide towards the discovery of PPAR agonists. Int J Biosci Biochem Bioinforma 4:100–105
Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49:6789–6801
Author contributions
KS., M.T., and H.K. designed the experiments. M.T. performed the experiments and analyzed data. M.T. wrote the paper. All authors approved the manuscript.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
10822_2015_9869_MOESM1_ESM.pdf
Receptor-rigid and ligand-flexible docking simulations using Autodock Vina and Sievgene programs and ROC curves for the biomacromolecule-rigid and ligand-flexible docking simulations using Docking Study with HyperChem program (PDF 443 kb)
Rights and permissions
About this article
Cite this article
Tsuji, M., Shudo, K. & Kagechika, H. Docking simulations suggest that all-trans retinoic acid could bind to retinoid X receptors. J Comput Aided Mol Des 29, 975–988 (2015). https://doi.org/10.1007/s10822-015-9869-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-015-9869-9