Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Fitting and handling dose response data

  • Special Series: Statistics in Molecular Modeling
  • Guest Editor: Anthony Nicholls
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The half maximal response of any compound in a biological system is a fundamental measure of the compound’s potency whether the activity of the compound is beneficial or detrimental. As such, the estimation of this response as an Ec50 or an Ic50 results in a value that has fundamental significance in the determination of the potential of a compound. A collection of these values provide an invaluable data framework for understanding structure–activity relationships and computational method development and benchmarking. Therefore, understanding the errors and reproducibility issues associated with Ic50 determinations is essential for their robust calculation. This paper will discuss the practical approaches to the use of the Levenberg–Marquardt minimization method to fit dose response data and evaluate the resultant data in a statistically rigorous way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Davenport AP, Russell FD (1996) Radioligand binding assays: theory and practice. In: Mather SJ (ed) Current directions in radiopharmaceutical research and development. Kluwer Academic Publishers, Dordrecht, pp 169–179

    Chapter  Google Scholar 

  2. Tallarida RJ (2000) Drug synergism and dose-effect data analysis. Chapman and Hall/CRC, Boca Raton

    Book  Google Scholar 

  3. Lutz M, Kenakin T (1999) Quantitative molecular pharmacology and informatics in drug discovery. Wiley, Cichester

    Google Scholar 

  4. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403

    Article  CAS  Google Scholar 

  5. Kunapuli P (2010) Ultra-high-throughput screening assays for GPCRs. In: Gilchrist A (ed.) GPCR molecular pharmacology and drug targeting. Wiley, Hoboken, p get start-get end

  6. Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. Proc Physiol Soc 40:iv–vii

    Google Scholar 

  7. Bindslev N (2008) Hill in hell. Drug-acceptor interactions. Co-Action Publishing, Sweeden, pp 257–281

    Chapter  Google Scholar 

  8. Nocedal J, Wright SJ (2006) Numerical optimization. Springer, New York

    Google Scholar 

  9. Meddings JB, Scott RB, Fick GH (1989) Analysis and comparison of sigmoidal curves: application to dose-response data. Am J Physiol 257(6 Pt 1):G982–G989

    CAS  Google Scholar 

  10. Bjõrck A (1996) Numerical methods for least squares problems. SIAM: Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  11. Snyman JA (2005) Practical mathematical optimization: an introduction to basic optimization theory and classical and new gradient-based algorithms. Springer, New York

    Google Scholar 

  12. Kalman D (2002) Doubly recursive multivariate automatic differentiation. Math Mag 75(3):187–202

    Article  Google Scholar 

  13. Desta F, Mac Siurtain MP, Colbert JJ (1999) Parameter estimation of nonlinear growth models in forestry. Silv Fenn 33(4):327–336

    Google Scholar 

  14. Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2:164–168

    Google Scholar 

  15. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11(2):431–441

    Article  Google Scholar 

  16. Prism v6. GraphPad Software. San Diego

  17. SigmaPlot v12.5. Systat Software. San Jose

  18. Pipeline Pilot v9.0. Accelrys. San Diego

  19. Evans M, Hastings N, Peacock B (2013) Statistical distributions. Wiley, New York

    Google Scholar 

  20. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C. Cambridge University Press, Cambridge

    Google Scholar 

  21. Snedecor GW, Cochran WG (1989) Statistical methods. Iowa State University Press, Ames

    Google Scholar 

  22. Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge University Press, Cambridge

    Book  Google Scholar 

  23. Motulsky H, Christopoulos A (2003) Fitting models to biological data using linear and non-linear regression. Cambridge University Press, Cambridge

    Google Scholar 

  24. Bergeron C, Moore G, Krien M, Breneman CM, Bennett KP (2011) Exploiting domain knowledge for improved quantitative high-throughput screening curve fitting. J Chem Inf Model 51(11):2802–2820

    Article  Google Scholar 

  25. DeLean A, Munson PJ, Rodbard D (1978) Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am J Physiol 235(2):E97–102

    CAS  Google Scholar 

  26. Giraldo J, Vivas NM, Vila E, Badia A (2002) Assessing the (a)symmetry of concentration-effect curves: empirical versus mechanistic models. Pharmacol Ther 95(1):21–45

    Article  CAS  Google Scholar 

  27. Gottschalk PG, Dunn JR (2005) The five-parameter logistic: a characterization and comparison with the four-parameter logistic. Anal Biochem 343(1):54–65

    Article  CAS  Google Scholar 

  28. Moré JJ, Garbow BS, Hillstrom KE (1980) User guide for MINPACK-1. Argonne National Laboratory

  29. CMinpack 1.3.2 (2013) http://devernay.free.fr/hacks/cminpack/index.html. Accessed 18 Dec 2013

  30. Apache commons mathematics library 3.2 (2014) http://commons.apache.org/proper/commons-math/. Accessed 5 May 2014

  31. Akaike H (1974) A new look at the statistical model information. IEEE Trans Automat Contr 19(6):716–723

    Article  Google Scholar 

  32. Burnham KP, Anderson DR (2004) Multimodel inference understanding AIC and BIC in model selection. Sociol Method Res 33(2):261–304

    Article  Google Scholar 

  33. Bardsley WG, McGinlay PB (1987) The use of non-linear regression analysis and the F test for model discrimination with dose-response curves data and ligand binding. J Theor Biol 126(2):183–201

    Article  CAS  Google Scholar 

  34. Brown SP, Muchmore SW, Hajduk PJ (2009) Healthy skepticism: assessing realistic model performance. Drug Discov Today 14(7–8):420–427

    Article  Google Scholar 

  35. Cumming G, Finch S (2005) Confidence intervals and how to read pictures of data. Am Psychol 60(2):170–180

    Article  Google Scholar 

  36. Stouch TR (2012) The errors of our ways: taking account of error in computer-aided drug design to build confidence intervals for our next 25 years. J Comput Aided Mol Des 26(1):125–134

    Article  CAS  Google Scholar 

  37. Kramer C, Kalliokosshi T, Gedek P, Vulpetti A (2012) The experimental uncertainty of heterogeneous public Ki data. J Med Chem 55(11):5165–5173

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Carleton Sage for critical review and assistance in proof reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gareth Jones.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, G. Fitting and handling dose response data. J Comput Aided Mol Des 29, 1–11 (2015). https://doi.org/10.1007/s10822-014-9752-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9752-0

Keywords

Navigation