Abstract
The α1-adrenoceptors (α1-ARs), in particular the α1A-AR subtype, are current therapeutic targets of choice for the treatment of urogenital conditions, such as benign prostatic hyperplasia (BPH). Due to the similarity between the transmembrane domains of the α1-AR subtypes, and the serotonin receptor subtype 1A (5-HT1A-R), currently used α1-AR subtype-selective drugs to treat BPH display considerable off-target affinity for the 5-HT1A-R, leading to side effects. We describe the construction and validation of pharmacophores for 5-HT1A-R agonists and antagonists. Through the structural diversity of the training sets used in their development, these pharmacophores define the properties of a compound needed to bind to 5-HT1A receptors. Using these and previously published pharmacophores in virtual screening and profiling, we have identified unique chemical compounds (hits) that fit the requirements to bind to our target, the α1A-AR, selectively over the off-target, the 5-HT1A-R. Selected hits have been obtained and their affinities for α1A-AR, α1B-AR and 5-HT1A-R determined in radioligand binding assays, using membrane preparations which contain human receptors expressed individually. Three of the tested hits demonstrate statistically significant selectivity for α1A-AR over 5-HT1A-R. All seven tested hits bind to α1A-AR, with two compounds displaying K i values below 1 μM, and a further two K i values of around 10 μM. The insights and knowledge gained through the development of the new 5-HT1A-R pharmacophores will greatly aid in the design and synthesis of derivatives of our lead compound, and allow the generation of more efficacious and selective ligands.
Similar content being viewed by others
Notes
Numbers indicate the Ballesteros-Weinstein numbering scheme where the first digit represents the transmembrane helix (TM) number followed by the position relative to the most conserved residue in each TM, assigned number 50. Numbers decrease towards the N-terminus.
References
Guiard BP, El Mansari M, Merali Z, Blier P (2008) Functional interactions between dopamine, serotonin and norepinephrine neurons: an in vivo electrophysiological study in rats with monoaminergic lesions. Int J Neuropsychoph 11(5):625–639
Kenakin T (2010) A holistic view of GPCR signaling. Nat Biotechnol 28(9):928–929
Ahmad N, Keith-Ferris J, Gooden E, Abell T (2006) Making a case for domperidone in the treatment of gastrointestinal motility disorders. Curr Opin Pharmacol 6(6):571–576
Albert PR, Zhou QY, Vantol HHM, Bunzow JR, Civelli O (1990) Cloning, functional expression, and messenger-RNA tissue distribution of the rat 5-hydroxytryptamine-1a receptor gene. J Biol Chem 265(10):5825–5832
Gitler MS, Piccio MM, Robillard JE, Jose PA (1991) Characterization of renal alpha-adrenoceptor subtypes in sheep during development. Am J Physiol 260(2):R407–R412
Langer SZ, Schoemaker H (1989) Alpha-adrenoceptor subtypes in blood-vessels—physiology and pharmacology. Clin Exp Hypertens A 11:21–30
Auclair AL, Kleven MS, Besnard J, Depoortere R, Newman-Tancredi A (2006) Actions of novel antipsychotic agents on apomorphine-induced PPI disruption: influence of combined serotonin 5-HT1A receptor activation and dopamine D-2 receptor blockade. Neuropsychopharmacol 31(9):1900–1909
Bantick RA, Deakin JFW, Grasby PM (2001) The 5-HT1A receptor in schizophrenia: a promising target for novel atypical neuroleptics? J Psychopharmacol 15(1):37–46
Christmas TJ, Kirby RS (1991) Alpha-adrenoceptor blockers in the treatment of benign prostatic hyperplasia. World J Urol 9(1):36–40
Hatzenbuhler NT, Baudy R, Evrard DA, Failli A, Harrison BL, Lenicek S, Mewshaw RE, Saab A, Shao U, Sze J, Zhang M, Zhou D, Chlenov M, Kagan M, Golembieski J, Hornby G, Lai M, Smith DL, Sullivan KM, Schechter LE, Andree TH (2008) Advances toward new antidepressants with dual serotonin transporter and 5-HT1A receptor affinity within a class of 3-aminochroman derivatives. Part 2. J Med Chem 51(21):6980–7004
Jain KS, Bariwal JB, Kathiravan MK, Phoujdar MS, Sahne RS, Chauhan BS, Shah AK, Yadav MR (2008) Recent advances in selective alpha1-adrenoreceptor antagonists as antihypertensive agents. Bioorgan Med Chem 16(9):4759–4800
Kanda H, Ishii K, Ogura Y, Imamura T, Kanai M, Arima K, Sugimura Y (2008) Naftopidil, a selective alpha-1 adrenoceptor antagonist, inhibits growth of human prostate cancer cells by G1 cell cycle arrest. Int J Cancer 122(2):444–451
Nowak M, Kolaczkowski M, Pawlowski M, Bojarski AJ (2006) Homology modeling of the serotonin 5-HT1A receptor using automated docking of bioactive compounds with defined geometry. J Med Chem 49(1):205–214
Sorbi C, Franchini S, Tait A, Prandi A, Gallesi R, Angeli P, Marucci G, Pirona L, Poggesi E, Brasili L (2009) 1,3-Dioxolane-based ligands as rigid analogues of naftopidil: structure-affinity/activity relationships at alpha1 and 5-HT1A receptors. Chem Med Chem 4(3):393–399
Teeter MM, Froimowitz M, Stec B, Durand CJ (1994) Homology modeling of the dopamine D-2 receptor and its testing by docking of agonists and tricyclic antagonists. J Med Chem 37(18):2874–2888
Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, Hufeisen SJ, Jensen NH, Kuijer MB, Matos RC, Tran TB, Whaley R, Glennon RA, Hert J, Thomas KLH, Edwards DD, Shoichet BK, Roth BL (2009) Predicting new molecular targets for known drugs. Nature 462(7270):175–181
Taguchi K, Yang M, Goepel M, Michel MC (1998) Comparison of human alpha1-adrenoceptor subtype coupling to protein kinase C activation and related signalling pathways. N-S Arch Pharmacol 357(2):100–110
Michel MC, Vrydag W (2006) Alpha1-, alpha2- and beta-adrenoceptors in the urinary bladder, urethra and prostate. Brit J Pharmacol 147:S88–S119
Rudner XL, Berkowitz DE, Booth JV, Funk BL, Cozart KL, D’Amico EB, El-Moalem H, Page SO, Richardson CD, Winters B, Marucci L, Schwinn DA (1999) Subtype specific regulation of human vascular alpha1-adrenergic receptors by vessel bed and age. Circulation 100(23):2336–2343
Koshimizu T, Tanoue A, Hirasawa A, Yamauchi J, Tsujimoto G (2003) Recent advances in alpha1-adrenoceptor pharmacology. Pharmacol Therapeut 98(2):235–244
Gillenwater JY, Conn RL, Chrysant SG, Roy J, Gaffney M, Ice K, Dias N (1995) Doxazosin for the treatment of benign prostatic hyperplasia in patients with mild-to-moderate essential-hypertension—a double-blind, placebo-controlled dose-response multicenter study. J Urology 154(1):110–115
Palea S, Chang DF, Rekik M, Regnier A, Lluel P (2008) Comparative effect of alfuzosin and tamsulosin on the contractile response of isolated rabbit prostatic and iris dilator smooth muscles—possible model for intraoperative floppy-iris syndrome. J Cataract Refr Surg 34(3):489–496
Takei R, Ikegaki I, Shibata K, Tsujimoto G, Asano T (1999) Naftopidil, a novel alpha1-adrenoceptor antagonist, displays selective inhibition of canine prostatic pressure and high affinity binding to cloned human alpha1-adrenoceptors. Jpn J Pharmacol 79(4):447–454
Bortolozzi A, Amargos-Bosch M, Toth M, Artigas F, Adell A (2004) In vivo efflux of serotonin in the dorsal raphe nucleus of 5-HT1A receptor knockout mice. J Neurochem 88(6):1373–1379
Li Q, Holmes A, Ma L, Van de Kar LD, Garcia F (2004) Medial hypothalamic 5-hydroxytryptamine (5-HT1A) receptors regulate neuroendocrine responses to stress and exploratory locomotor activity: application of recombinant adenovirus containing 5-HT1A sequences. J Neurosci 24(48):10868–10877
Monti JM, Jantos H (2003) Differential effects of the 5-HT1A receptor agonist flesinoxan given locally or systemically on REM sleep in the rat. Eur J Pharmacol 478(2–3):121–130
Yu YX, Ramage AG, Koss MC (2004) Pharmacological studies of 8-OH-DPAT-induced pupillary dilation in anesthetized rats. Eur J Pharmacol 489(3):207–213
Mittra S, Malhotra S, Naruganahalli KS, Chugh A (2007) Role of peripheral 5-HT1A receptors in detrusor over activity associated with partial bladder outlet obstruction in female rats. Eur J Pharmacol 561(1–3):189–193
MacDougall IJA, Griffith R (2006) Selective pharmacophore design for alpha1-adrenoceptor subtypes. J Mol Graph Model 25(1):146–157
Stoddart ES, Senadheera S, MacDougall IJA, Griffith R, Finch AM (2011) A novel structural framework for alpha1A/D-adrenoceptor selective antagonists identified using subtype selective pharmacophores. Plos One 6(5):e19695
Lopez-Rodriguez ML, Morcillo MJ, Fernandez E, Porras E, Orensanz L, Beneytez ME, Manzanares J, Fuentes JA (2001) Synthesis and structure-activity relationships of a new model of arylpiperazines. 5. Study of the physicochemical influence of the pharmacophore on 5-HT1A/alpha1-adrenergic receptor affinity: synthesis of a new derivative with mixed 5-HT1A/D-2 antagonist properties. J Med Chem 44(2):186–197
Strappaghetti G, Mastrini L, Lucacchini A, Giannaccini G, Betti L, Fabbrini L (2008) Synthesis and biological affinity of new imidazo- and indol-arylpiperazine derivatives: further validation of a pharmacophore model for alpha1-adrenoceptor antagonists. Bioorg Med Chem Lett 18(18):5140–5145
Weber KC, Salum LB, Honorio KM, Andricopulo AD, da Silva ABF (2010) Pharmacophore-based 3D QSAR studies on a series of high affinity 5-HT1A receptor ligands. Eur J Med Chem 45(4):1508–1514
Spitzer GM, Heiss M, Mangold M, Mark P, Kirchmair J, Wolber G, Liedl KR (2010) One concept, three implementations of 3D pharmacophore-based virtual screening: distinct coverage of chemical search space. J Chem Inf Model 50(7):1241–1247
Lopata MA, Cleveland DW, Sollnerwebb B (1984) High-level transient expression of a chloramphenicol acetyl transferase gene by deae-dextran mediated DNA transfection coupled with a dimethylsulfoxide or glycerol shock-treatment. Nucleic Acids Res 12(14):5707–5717
Perez DM, Piascik MT, Graham RM (1991) Solution-phase library screening for the identification of rare clones—isolation of an alpha-1d-adrenergic receptor cDNA. Mol Pharmacol 40(6):876–883
Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72(1–2):248–254
Li H, Sutter J, Hoffmann R (2000) HypoGen: an automated system for generating 3D predictive pharmacophore models. In: Güner OF (ed) Pharmacophore perception, development, and use in drug design, International University Line Biotechnology Series, La Jolla, pp 171–189
Chiang YK, Kuo CC, Wu YS, Chen CT, Coumar MS, Wu JS, Hsieh HP, Chang CY, Jseng HY, Wu MH, Leou JS, Song JS, Chang JY, Lyu PC, Chao YS, Wu SY (2009) Generation of ligand-based pharmacophore model and virtual screening for identification of novel tubulin inhibitors with potent anticancer activity. J Med Chem 52(14):4221–4233
Ahmed M, Hossain M, Bhuiyan MA, Ishiguro M, Tanaka T, Muramatsu I, Nagatomo T (2008) Mutational analysis of the alpha1A-adrenergic receptor binding pocket of antagonists by radioligand binding assay. Biol Pharm Bull 31(4):598–601
Cavalli A, Fanelli F, Taddei C, DeBenedetti PG, Cotecchia S (1996) Amino acids of the alpha(1B)-adrenergic receptor involved in agonist binding: differences in docking catecholamines to receptor subtypes. Febs Lett 399:9–13
Olivier B, Soudijn W, van Wijngaarden I (1999) The 5-HT1A receptor and its ligands: structure and function. Prog Drug Res 52:103–165
Ryan AJ, Baker BR, Vermeulen NMJ (1970) Irreversible enzyme inhibitors. CLXXIV. Metabolism of 4-[p-(4,6-diamino-1,2-dihydro-2,2-dimethyl-s-triazin-1-yl)hydrocinnamido]-o-toluenesulfonyl fluoride (NSC-113423), and active-site-directed irreversible inhibitor of dihydrofolic reductase. J Med Chem 13(6):1140–1142
Adams A, Jarrott B, Elmes BC, Denny WA, Wakelin LP (1985) Interaction of DNA-intercalating antitumor agents with adrenoceptors. Mol Pharmacol 27(4):480–491
Richardson CD, Donatucci CF, Page SO, Wilson KH, Schwinn DA (1997) Pharmacology of tamsulosin: saturation-binding isotherms and competition analysis using cloned alpha1-adrenergic receptor subtypes. Prostate 33(1):55–59
Sharif NA, Drace CD, Williams GW, Crider JY (2004) Cloned human 5-HT1A receptor pharmacology determined using agonist binding and measurement of cAMP accumulation. J Pharm Pharmacol 56(10):1267–1274
Pulito VL, Li XB, Varga SS, Mulcahy LS, Clark KS, Halbert SA, Reitz AB, Murray WV, Jolliffe LK (2000) An investigation of the uroselective properties of four novel alpha1A-adrenergic receptor subtype-selective antagonists. J Pharmacol Exp Ther 294(1):224–229
Quaglia W, Santoni G, Pigini M, Piergentili A, Gentili F, Buccioni A, Mosca M, Lucciarini R, Amantini C, Nabissi MI, Ballarini P, Poggesi E, Leonardi A, Giannella M (2005) Structure-activity relationships in 1,4-benzodioxan-related compounds. 8. {2-[2-(4-chlorobenzyloxy)phenoxy]ethyl}-[2-(2,6-dimethoxyphenoxy)ethyl]amine (clopenphendioxan) as a tool to highlight the involvement of alpha(1D)- and alpha(1B)-adrenoreceptor subtypes in the regulation of human PC-3 prostate cancer cell apoptosis and proliferation. J Med Chem 48(24):7750–7763
Benning CM, Kyprianou N (2002) Quinazoline-derived alpha 1-adrenoceptor antagonists induce prostate cancer cell apoptosis via an alpha 1-adrenoceptor-independent action. Cancer Res 62(2):597–602
Andersson KE, Wyllie MG (2003) Ejaculatory dysfunction: why all alpha-blockers are not equal. BJU Int 92(9):876–877
Chanda PK, Minchin MCW, Davis AR, Greenberg L, Reilly Y, Mcgregor WH, Bhat R, Lubeck MD, Mizutani S, Hung PP (1993) Identification of residues important for ligand-binding to the human 5-hydroxytryptamine-1A serotonin receptor. Mol Pharmacol 43(4):516–520
Franchini S, Prandi A, Sorbi C, Tait A, Baraldi A, Angeli P, Buccioni M, Cilia A, Poggesi E, Fossa P, Brasili L (2010) Discovery of a new series of 5-HT1A receptor agonists. Bioorg Med Chem Lett 20(6):2017–2020
Gaillard P, Carrupt PA, Testa B, Schambel P (1996) Binding of arylpiperazines, (aryloxy)propanolamines, and tetrahydropyridylinldoles to the 5-HT1A receptor: contribution of the molecular lipophilicity potential to three-dimensional quantitative structure-affinity relationship models. J Med Chem 39(1):126–134
Lopez-Rodriguez ML, Ayala D, Viso A, Benhamu B, de la Pradilla RF, Zarza F, Ramos JA (2004) Synthesis and structure-activity relationships of a new model of arylpiperazines. Part 7: study of the influence of lipophilic factors at the terminal amide fragment on 5-HT1A affinity/selectivity. Bioorgan Med Chem 12(6):1551–1557
Franchini S, Prandi A, Baraldi A, Sorbi C, Tait A, Buccioni M, Marucci G, Cilia A, Pirona L, Fossa P, Cichero E, Brasili L (2010) 1,3-Dioxolane-based ligands incorporating a lactam or imide moiety: structure-affinity/activity relationship at alpha1-adrenoceptor subtypes and at 5-HT1A receptors. Eur J Med Chem 45(9):3740–3751
Sabb AL, Vogel RL, Kelly MG, Palmer Y, Smith DL, Andree TH, Schechter LE (2001) 1,2,5-thiadiazole derivatives are potent and selective ligands at human 5-HT1A receptors. Bioorg Med Chem Lett 11(8):1069–1071
Shen ZQ, Ramamoorthy PS, Hatzenbuhler NT, Evrard DA, Childers W, Harrison BL, Chlenov M, Hornby G, Smith DL, Sullivan KM, Schechter LE, Andree TH (2010) Synthesis and structure-activity relationship of novel lactam-fused chroman derivatives having dual affinity at the 5-HT1A receptor and the serotonin transporter. Bioorg Med Chem Lett 20(1):222–227
Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS, Schnapp A, Konetzki I, Sunahara RK, Gellman SH, Pautsch A, Steyaert J, Weis WI, Kobilka BK (2011) Structure of a nanobody-stabilized active state of the beta2 adrenoceptor. Nature 469(7329):175–180
Doddareddy MR, Choo H, Cho YS, Rhim H, Koh HY, Lee JH, Jeong SW, Pae AN (2007) 3D pharmacophore based virtual screening of T-type calcium channel blockers. Bioorgan Med Chem 15(2):1091–1105
Ryu K, Kim ND, Il Choi S, Han CK, Yoon JH, No KT, Kim KH, Seong BL (2009) Identification of novel inhibitors of HCV RNA-dependent RNA polymerase by pharmacophore-based virtual screening and in vitro evaluation. Bioorgan Med Chem 17(8):2975–2982
Al-Sha’er MA, Taha MO (2010) Discovery of novel CDK1 inhibitors by combining pharmacophore modeling, QSAR analysis and in silico screening followed by in vitro bioassay. Eur J Med Chem 45(9):4316–4330
Aparoy P, Reddy KK, Kalangi SK, Reddy TC, Reddanna P (2010) Pharmacophore modeling and virtual screening for designing potential 5-lipoxygenase inhibitors. Bioorg Med Chem Lett 20(3):1013–1018
Linnanen T, Brisander M, Unelius L, Sundholm G, Hacksell U, Johansson AM (2000) Derivatives of (R)-1,11-methyleneaporphine: synthesis, structure, and interactions with G-protein coupled receptors. J Med Chem 43(7):1339–1349
Newman-Tancredi A, Martel JC, Assie MB, Buritova J, Lauressergues E, Cosi C, Heusler P, Bruins Slot L, Colpaert FC, Vacher B, Cussac D (2009) Signal transduction and functional selectivity of F15599, a preferential post-synaptic 5-HT1A receptor agonist. Br J Pharmacol 156(2):338–353
Newman-Tancredi A, Gavaudan S, Conte C, Chaput C, Touzard M, Verriele L, Audinot V, Millan MJ (1998) Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: a [S-35]GTP gamma S binding study. Eur J Pharmacol 355(2–3):245–256
Maurel JL, Autin JM, Funes P, Newman-Tancredi A, Colpaert F, Vacher B (2007) High-efficacy 5-HT1A Agonists for antidepressant treatment: a renewed opportunity. J Med Chem 50(20):5024–5033
Zhou DH, Hatzenbuhler NT, Gross JL, Harrison BL, Evrard DA, Chlenov M, Golembieski J, Hornby G, Schechter LE, Smith DL, Andree TH, Stack GP (2007) Novel pyridyl-fused 3-amino chroman derivatives with dual action at serotonin transporter and 5-HT1A receptor. Bioorg Med Chem Lett 17(11):3117–3121
Paluchowska MH, Bugno R, Duszynska B, Tatarczynska E, Nikiforuk A, Lenda T, Chojnacka-Wojcik E (2007) The influence of modifications in imide fragment structure on 5-HT1A and 5-HT7 receptor affinity and in vivo pharmacological properties of some new 1-(m-trifluoromethylphenyl)piperazines. Bioorgan Med Chem 15(22):7116–7125
Picard M, Morisset S, Cloix JF, Bizot JC, Guerin M, Beneteau V, Guillaumet G, Hevor TK (2010) Pharmacological, neurochemical, and behavioral profile of Jb-788, a new 5-HT1A agonist. Neuroscience 169(3):1337–1346
Chemel BR, Roth BL, Armbruster B, Watts VJ, Nichols DE (2006) WAY-100635 is a potent dopamine D4 receptor agonist. Psychopharmacology 188(2):244–251
Ward SE, Eddershaw PJ, Scott CM, Gordon LJ, Lovell PJ, Moore SH, Smith PW, Starr KR, Thewlis KM, Watson JM (2008) Discovery of potent, orally bioavailable, selective 5-HT1A/B/D receptor antagonists. J Med Chem 51(10):2887–2890
Kuo GH, Prouty C, Murray WV, Pulito V, Jolliffe L, Cheung P, Varga S, Evangelisto M, Wang J (2000) Design, synthesis, and structure-activity relationships of phthalimide-phenylpiperazines: a novel series of potent and selective alpha1A-adrenergic receptor antagonists. J Med Chem 43(11):2183–2195
Dunlop J, Zhang Y, Smith DL, Schechter LE (1998) Characterization of 5-HT1A receptor functional coupling in cells expressing the human 5-HT1A receptor as assessed with the cytosensor microphysiometer. J Pharmacol Toxicol Methods 40(1):47–55
Krushinski JH, Schaus JM, Thompson DC, Calligaro DO, Nelson DL, Luecke SH, Wainscott DB, Wong DT (2007) Indoloxypropanolamine analogues as 5-HT1A receptor antagonists. Bioorg Med Chem Lett 17(20):5600–5604
Dessalew N (2008) QSAR study on dual 5-HT1A and 5-HT1B antagonists: an insight into the structural requirement for antidepressant activity. Arch Pharm 341(5):314–322
Serafinowska HT, Blaney FE, Lovell PJ, Merlo GG, Scott CM, Smith PW, Starr KR, Watson JM (2008) Novel 5-HT1A/1B/1D receptors antagonists with potent 5-HT reuptake inhibitory activity. Bioorg Med Chem Lett 18(20):5581–5585
Evrard DA, Zhou P, Yi SY, Zhou DH, Smith DL, Sullivan KM, Hornby GA, Schechter LE, Andree TH, Mewshaw RE (2005) Studies towards the next generation of antidepressants. Part 4: derivatives of 4-(5-fluoro-1H-indol-3-yl)cyclohexylamine with affinity for the serotonin transporter and the 5-HT1A receptor. Bioorg Med Chem Lett 15(4):911–914
Saussy DL Jr, Goetz AS, Queen KL, King HK, Lutz MW, Rimele TJ (1996) Structure activity relationships of a series of buspirone analogs at alpha-1 adrenoceptors: further evidence that rat aorta alpha-1 adrenoceptors are of the alpha-1D-subtype. J Pharmacol Exp Ther 278(1):136–144
Acknowledgments
The authors wish to acknowledge the help of Dr Luke Hunter, School of Chemistry, University of New South Wales, in determining the purity and identity of the test compounds, using the Analytical Centre Facilities. J. Chen wishes to acknowledge financial support through a China Scholarship Council scholarship.
Author information
Authors and Affiliations
Corresponding author
Additional information
Tony Ngo and Timothy J. Nicholas have contributed equally.
Rights and permissions
About this article
Cite this article
Ngo, T., Nicholas, T.J., Chen, J. et al. 5-HT1A receptor pharmacophores to screen for off-target activity of α1-adrenoceptor antagonists. J Comput Aided Mol Des 27, 305–319 (2013). https://doi.org/10.1007/s10822-013-9647-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-013-9647-5