Abstract
Prediction of protein folding rate change upon amino acid substitution is an important and challenging problem in protein folding kinetics and design. In this work, we have analyzed the relationship between amino acid properties and folding rate change upon mutation. Our analysis showed that the correlation is not significant with any of the studied properties in a dataset of 476 mutants. Further, we have classified the mutants based on their locations in different secondary structures and solvent accessibility. For each category, we have selected a specific combination of amino acid properties using genetic algorithm and developed a prediction scheme based on quadratic regression models for predicting the folding rate change upon mutation. Our results showed a 10-fold cross validation correlation of 0.72 between experimental and predicted change in protein folding rates. The correlation is 0.73, 0.65 and 0.79, respectively in strand, helix and coil segments. The method has been further tested with an extended dataset of 621 mutants and a blind dataset of 62 mutants, and we observed a good agreement with experiments. We have developed a web server for predicting the folding rate change upon mutation and it is available at http://bioinformatics.myweb.hinet.net/fora.htm.
Similar content being viewed by others
References
Apetri AC, Surewicz K, Surewicz WK (2004) J Biol Chem 279(17):18008
Capriotti E, Casadio R (2007) Bioinformatics 23(3):385
Jenkins DC, Pearson DS, Harvey A, Sylvester ID, Geeves MA, Pinheiro TJ (2009) Eur Biophys J 38(5):625
Hart T, Hosszu LL, Trevitt CR, Jackson GS, Waltho JP, Collinge J, Clarke AR (2009) Proc Natl Acad Sci USA 106(14):5651
Maxwell KL, Wildes D, Zarrine-Afsar A, De Los Rios MA, Brown AG, Friel CT, Hedberg L, Horng JC, Bona D, Miller EJ, Vallee-Belisle A, Main ER, Bemporad F, Qiu L, Teilum K, Vu ND, Edwards AM, Ruczinski I, Poulsen FM, Kragelund BB, Michnick SW, Chiti F, Bai Y, Hagen SJ, Serrano L, Oliveberg M, Raleigh DP, Wittung-Stafshede P, Radford SE, Jackson SE, Sosnick TR, Marqusee S, Davidson AR, Plaxco KW (2005) Protein Sci 14(3):602
Jackson S (1998) Fold Des 3(4):R81
Gromiha MM, Huang LT (2011) Curr Protein Pept Sci 12(6):490
Gromiha MM (2010) Protein Bioinformatics: From Sequence to Function. Academic Press, Singapore
Fulton KF, Devlin GL, Jodun RA, Silvestri L, Bottomley SP, Fersht AR, Buckle AM (2005) Nucleic Acids Res 33(Database issue):D279
Bogatyreva NS, Osypov AA, Ivankov DN (2009) Nucleic Acids Res 37(Database issue):D342
Huang L-T, Gromiha MM (2010) Bioinformatics 26(17):2121
Plaxco KW, Simons KT, Baker D (1998) J Mol Biol 277(4):985
Gromiha MM, Selvaraj S (2001) J Mol Biol 310(1):27
Zhou H, Zhou Y (2002) Biophys J 82(1 Pt 1):458
Micheletti C (2003) Proteins 51(1):74
Gromiha MM (2009) J Chem Inf Model 49(4):1130
Gromiha MM (2003) J Chem Inf Comput Sci 43(5):1481
Gromiha MM (2005) J Chem Inf Model 45(2):494
Huang JT, Tian J (2006) Proteins 63(3):551
Gromiha MM, Thangakani AM, Selvaraj S (2006) Nucleic Acids Res 34(Web Server issue):W70
Ivankov DN, Finkelstein AV (2004) Proc Natl Acad Sci USA 101(24):8942
Punta M, Rost B (2005) J Mol Biol 348(3):507
Ma BG, Guo JX, Zhang HY (2006) Proteins 65(2):362
Huang LT, Gromiha MM (2008) J Comput Chem 29(10):1675
Huang JT, Cheng JP, Chen H (2007) Proteins 67(1):12
Jiang Y, Iglinski P, Kurgan L (2009) J Comput Chem 30(5):772
Gao J, Zhang T, Zhang H, Shen S, Ruan J, Kurgan L (2010) Proteins 78(9):2114
Gromiha Selvaraj (2008) Curr Bioinforma 3(1):1
Prabakaran P, An J, Gromiha MM, Selvaraj S, Uedaira H, Kono H, Sarai A (2001) Bioinformatics 17(11):1027
Porter CT, Bartlett GJ, Thornton JM (2004) Nucleic Acids Res 32(Database issue):D129
Lopez G, Valencia A, Tress M (2007) Nucleic Acids Res 35(Database issue):D219
Kumar MD, Gromiha MM (2006) Nucleic Acids Res 34(Database issue):D195
Gromiha MM, Yabuki Y, Suresh MX, Thangakani AM, Suwa M, Fukui K (2009) Nucleic Acids Res 37(Database issue):D201
Gromiha MM, An J, Kono H, Oobatake M, Uedaira H, Sarai A (1999) Nucleic Acids Res 27(1):286
Guerois R, Nielsen JE, Serrano L (2002) J Mol Biol 320(2):369
Bordner AJ, Abagyan RA (2004) Proteins 57(2):400
Capriotti E, Fariselli P, Calabrese R, Casadio R (2005) Bioinformatics 21(Suppl 2):ii54
Cheng J, Randall A, Baldi P (2006) Proteins 62(4):1125
Yin S, Ding F, Dokholyan NV (2007) Nat Methods 4(6):466
Bromberg Y, Yachdav G, Rost B (2008) Bioinformatics 24(20):2397
Huang LT, Gromiha MM (2009) Bioinformatics 25(17):2181
Dehouck Y, Grosfils A, Folch B, Gilis D, Bogaerts P, Rooman M (2009) Bioinformatics 25(19):2537
Carlsson J, Soussi T, Persson B (2009) FEBS J 276(15):4142
Gao S, Zhang N, Duan GY, Yang Z, Ruan JS, Zhang T (2009) Hum Mutat 30(8):1161
Munoz V, Eaton WA (1999) Proc Natl Acad Sci USA 96(20):11311
Weikl TR (2005) Proteins 60(4):701
Tomii K, Kanehisa M (1996) Protein Eng 9(1):27
Gromiha MM, Oobatake M, Sarai A (1999) Biophys Chem 82(1):51
Gromiha MM, Oobatake M, Kono H, Uedaira H, Sarai A (2000) J Biomol Struct Dyn 18(2):281
Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kanehisa M (2008) Nucleic Acids Res 36(Database issue):D202
Kawashima S, Ogata H, Kanehisa M (1999) Nucleic Acids Res 27(1):368
Gromiha MM, Oobatake M, Kono H, Uedaira H, Sarai A (1999) Protein Eng 12(7):549
Kabsch W, Sander C (1983) Biopolymers 22(12):2577
Gromiha MM, Selvaraj S (1997) J of Biol Phys 23(3):151
Gromiha MM, Selvaraj S (2004) Prog Biophys Mol Biol 86(2):235
Friel CT, Capaldi AP, Radford SE (2003) J Mol Biol 326(1):293
Gromiha MM (2007) Biochem Soc Trans 35(Pt 6):1569
Gromiha MM, Huang LT (2011) Curr Protein Pept Sci 12(6):490
Ahmad S, Gromiha MM, Sarai A (2004) Bioinformatics 20(4):477
Chang C–C, Lin C-J (2001):http://www.csie.ntu.edu.tw/~cjlin/libsvm
Wu T-F, Lin C-J, Weng R (2004) J Mach Learn Res 5:975
Moody J, Darken C (1989) Neural Comput 1(2):281
Rumelhart DE, Hinton GE, Williams RJ (1986) In Parallel distributed processing: explorations in the microstructure of cognition, vol. 1. Cambridge, MA, USA, MIT Press, pp 318
Cleary JG, Trigg LE (1995) In Proceedings of the 12th international conference on machine learning. San Francisco: Morgan Kaufmann, pp 108
Hastie T, Tibshirani R, Friedman JH (2009) The elements of statistical learning : data mining, inference, and prediction, 2nd edn. Springer, New York, NY
Naganathan AN, Munoz V (2010) Proc Natl Acad Sci USA 107(19):8611
Koshi JM, Goldstein RA (1995) Protein Eng 8(7):641
Luthy R, McLachlan AD, Eisenberg D (1991) Proteins 10(3):229
Tobi D, Shafran G, Linial N, Elber R (2000) Proteins 40(1):71
Miyazawa S, Jernigan R (1985) Macromolecules 18(3):534
Acknowledgments
We thank the anonymous reviewers for their constructive comments to improve the manuscript.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Huang, LT., Gromiha, M.M. Real value prediction of protein folding rate change upon point mutation. J Comput Aided Mol Des 26, 339–347 (2012). https://doi.org/10.1007/s10822-012-9560-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-012-9560-3