Abstract
The pathophysiology of auditory hallucination, a common symptom of schizophrenia, has yet been understood, but during auditory hallucination, primary auditory cortex (A1) shows paradoxical responses. When auditory stimuli are absent, A1 becomes hyperactive, while A1 responses to auditory stimuli are reduced. Such activation pattern of A1 responses during auditory hallucination is consistent with aberrant gamma rhythms in schizophrenia observed during auditory tasks, raising the possibility that the pathology underlying abnormal gamma rhythms can account for auditory hallucination. Moreover, A1 receives top-down signals in the gamma frequency band from an adjacent association area (Par2), and cholinergic modulation regulates interactions between A1 and Par2. In this study, we utilized a computational model of A1 to ask if disrupted cholinergic modulation could underlie abnormal gamma rhythms in schizophrenia. Furthermore, based on our simulation results, we propose potential pathology by which A1 can directly contribute to auditory hallucination.
Similar content being viewed by others
References
Alherz, F., Alherz, M., & Almusawi, H. (2017). NMDAR hypofunction and somatostatin-expressing GABAergic interneurons and receptors: a newly identified correlation and its effects in schizophrenia. Schizophrenia Research: Cognition, 8, 1–6. https://doi.org/10.1016/j.scog.2017.02.001.
Allen, P., Modinos, G., Hubl, D., Shields, G., Cachia, A., Jardri, R., et al. (2012). Neuroimaging auditory hallucinations in schizophrenia: from neuroanatomy to neurochemistry and beyond. Schizophrenia Bulletin, 38(4), 695–703. https://doi.org/10.1093/schbul/sbs066.
Arnal, L. H., Wyart, V., & Giraud, A.-L. (2011). Transitions in neural oscillations reflect prediction errors generated in audiovisual speech. Nature Neuroscience, 14(6), 797–801. https://doi.org/10.1038/nn.2810.
Battaglia, D., & Hansel, D. (2011). Synchronous chaos and broad band gamma rhythm in a minimal multi-layer model of primary visual cortex. PLoS Computational Biology, 7(10). https://doi.org/10.1371/journal.pcbi.1002176.
Battaglia, D., Brunel, N., & Hansel, D. (2007). Temporal decorrelation of collective oscillations in neural networks with local inhibition and long-range excitation. Physical Review Letters, 99(23), 1–4. https://doi.org/10.1103/PhysRevLett.99.238106.
Cachia, A., Amad, A., Brunelin, J., Krebs, M.-O., Plaze, M., Thomas, P., & Jardri, R. (2015). Deviations in cortex sulcation associated with visual hallucinations in schizophrenia. Molecular Psychiatry, 20(9), 1101–1107. https://doi.org/10.1038/mp.2014.140.
Chen, N., Sugihara, H., & Sur, M. (2015). An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity. Nature Neuroscience, 18(6), 892–902. https://doi.org/10.1038/nn.4002.
Couey, J. J., Meredith, R. M., Spijker, S., Poorthuis, R. B., Smit, A. B., Brussaard, A. B., & Mansvelder, H. D. (2007). Distributed network actions by nicotine increase the threshold for spike-timing-dependent plasticity in prefrontal cortex. Neuron, 54(1), 73–87. https://doi.org/10.1016/j.neuron.2007.03.006.
Curcic-Blake, B., Ford, J. M., Hubl, D., Orlov, N. D., Sommer, I. E., Waters, F., et al. (2017). Interaction of language, auditory and memory brain networks in auditory verbal hallucinations c, 148, 1–20. https://doi.org/10.1016/j.pneurobio.2016.11.002.
Destexhe, A., & Bedard, C. (2013). Local field potential. Scholarpedia, 8(8), 10183.
Dierks, T., Linden, D. E., Jandl, M., Formisano, E., Goebel, R., Lanfermann, H., & Singer, W. (1999). Activation of Heschl’s gyrus during auditory hallucinations. Neuron, 22(3), 615–621. https://doi.org/10.1016/S0896-6273(00)80715-1.
Douglas, R. J., & Martin, K. A. (2004). Neuronal circuits of the neocortex. Annual Review of Neuroscience, 27, 419–451. https://doi.org/10.1146/annurev.neuro.27.070203.144152.
Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral cortex (New York, N.Y. : 1991), 1(1), 1–47 http://www.ncbi.nlm.nih.gov/pubmed/1822724.
Flynn, G., Alexander, D., Harris, A., Whitford, T., Wong, W., Galletly, C., et al. (2008). Increased absolute magnitude of gamma synchrony in first-episode psychosis. Schizophrenia Research, 105(1–3), 262–271. https://doi.org/10.1016/j.schres.2008.05.029.
Ford, J. M., & Mathalon, D. H. (2005). Corollary discharge dysfunction in schizophrenia: Can it explain auditory hallucinations? International Journal of Psychophysiology, 58(2–3 SPEC. ISS), 179–189. https://doi.org/10.1016/j.ijpsycho.2005.01.014.
Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9(10), 474–480. https://doi.org/10.1016/j.tics.2005.08.011.
Fritz, J. B., David, S. V., Fritz, J. B., Elhilali, M., David, S. V., & Shamma, S. A. (2007). Auditory attention – Focusing the searchlight on sound auditory attention — focusing the searchlight on sound. Current Opinion in Neurobiology, 17, 1–19. https://doi.org/10.1016/j.conb.2007.07.011.
Gewaltig, M.-O., & Diesmann, M. (2007). NEST (NEural simulation tool). Scholarpedia, 2(4), 1430.
Gibson, J. R., Beierlein, M., & Connors, B. W. (1999). Two networks of electrically coupled inhibitory neurons in neocortex. Nature, 402(6757), 75–79. https://doi.org/10.1038/47035.
Giraud, A.-L., & Poeppel, D. (2012). Cortical oscillations and speech processing: emerging computational principles and operations. Nature Neuroscience, 15(4), 511–517. https://doi.org/10.1038/nn.3063.
Gulledge, A. T., Park, S. B., Kawaguchi, Y., & Stuart, G. J. (2007). Heterogeneity of phasic cholinergic signaling in neocortical neurons. 2215–2229. https://doi.org/10.1152/jn.00493.2006.
Hill, S., & Tononi, G. (2005). Modeling sleep and wakefulness in the thalamocortical system. Journal of Neurophysiology, 93(3), 1671–1698. https://doi.org/10.1152/jn.00915.2004.
Hirano, Y., Oribe, N., Kanba, S., Onitsuka, T., Nestor, P. G., & Spencer, K. M. (2015). Spontaneous gamma activity in schizophrenia. JAMA Psychiatry, 72(8), 813–821. https://doi.org/10.1001/jamapsychiatry.2014.2642.
Jadi, M. P., Margarita Behrens, M., & Sejnowski, T. J. (2015). Abnormal gamma oscillations in N-methyl-D-aspartate receptor Hypofunction models of schizophrenia. Biological Psychiatry, 79(9), 716–726. https://doi.org/10.1016/j.biopsych.2015.07.005.
Jardri, R., Thomas, P., Delmaire, C., Delion, P., & Pins, D. (2013). The neurodynamic organization of modality-dependent hallucinations. Cerebral Cortex, 23(5), 1108–1117. https://doi.org/10.1093/cercor/bhs082.
Jardri, R., Hugdahl, K., Hughes, M., Brunelin, J., Waters, F., Alderson-Day, B., et al. (2016). Are hallucinations due to an imbalance between excitatory and inhibitory influences on the brain? Schizophrenia Bulletin, 42(5), 1124–1134. https://doi.org/10.1093/schbul/sbw075.
Jiang, X., Shen, S., Cadwell, C. R., Berens, P., Sinz, F., Ecker, A. S., et al. (2015). Principles of connectivity among morphologically defined cell types in adult neocortex. Science, 350(6264), aac9462–aac9462. https://doi.org/10.1126/science.aac9462.
Kawaguchi, Y., & Kubota, Y. (1997). GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cerebral cortex (New York, N.Y. : 1991), 7(6), 476–486 http://www.ncbi.nlm.nih.gov/pubmed/9276173.
Kompus, K., Westerhausen, R., & Hugdah, I. K. (2011). The “paradoxical” engagement of the primary auditory cortex in patients with auditory verbal hallucinations: a meta-analysis of functional neuroimaging studies. Neuropsychologia, 49(12), 3361–3369.
Kompus, K., Falkenberg, L. E., Bless, J. J., Johnsen, E., & Kroken, R. A. (2013). The role of the primary auditory cortex in the neural mechanism of auditory verbal hallucinations, 7(April), 1–13. https://doi.org/10.3389/fnhum.2013.00144.
Kwon, J. S., O’Donnell, B. F., Wallenstein, G. V., Greene, R. W., Hirayasu, Y., Nestor, P. G., et al. (1999). Gamma frequency–range abnormalities to auditory stimulation in schizophrenia. Archives of General Psychiatry, 56(11), 1001. https://doi.org/10.1001/archpsyc.56.11.1001.
Lakatos, P., Shah, A. S., Knuth, K. H., Ulbert, I., Karmos, G., & Schroeder, C. E. (2005). An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. Journal of Neurophysiology, 94(3), 1904–1911. https://doi.org/10.1152/jn.00263.2005.
Lakatos, P., Chen, C. M., O’Connell, M. N., Mills, A., & Schroeder, C. E. (2007). Neuronal oscillations and multisensory interaction in primary auditory cortex. Neuron, 53(2), 279–292. https://doi.org/10.1016/j.neuron.2006.12.011.
Lakatos, P., O’Connell, M. N., Barczak, A., Mills, A., Javitt, D. C., & Schroeder, C. E. (2010). The leading sense: supramodal control of neurophysiological context by attention. Neuron, 42(2), 157–162. https://doi.org/10.1016/j.neuron.2009.10.014.
Lee, J. H., Whittington, M. A., & Kopell, N. J. (2015). Potential mechanisms underlying intercortical signal regulation via cholinergic neuromodulators. Journal of Neuroscience, 35(45), 15000–15014. https://doi.org/10.1523/JNEUROSCI.0629-15.2015.
Lewis, D. A., Hashimoto, T., & Volk, D. W. (2005). Cortical inhibitory neurons and schizophrenia. Nature Reviews. Neuroscience, 6(4), 312–324. https://doi.org/10.1038/nrn1648.
Lisman, J. (2012). Excitation, inhibition, local oscillations, or large-scale loops: what causes the symptoms of schizophrenia? Current Opinion in Neurobiology, 22(3), 537–544. https://doi.org/10.1016/j.conb.2011.10.018.
Markov, N. T., & Kennedy, H. (2013). The importance of being hierarchical. Current Opinion in Neurobiology, 23(2), 187–194. https://doi.org/10.1016/j.conb.2012.12.008.
Mazzoni, A., Panzeri, S., Logothetis, N. K., & Brunel, N. (2008). Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons. PLoS Computational Biology, 4(12), e1000239. https://doi.org/10.1371/journal.pcbi.1000239.
Mitchell, J. F., Sundberg, K. A., & Reynolds, J. H. (2007). Differential attention-dependent response modulation across cell classes in macaque visual area V4. Neuron, 55(1), 131–141. https://doi.org/10.1016/j.neuron.2007.06.018.
Mondino, M., Jardri, R., Suaud-Chagny, M.-F., Saoud, M., Poulet, E., & Brunelin, J. (2016). Effects of Fronto-temporal transcranial direct current stimulation on auditory verbal hallucinations and resting-state functional connectivity of the left temporo-parietal junction in patients with schizophrenia. Schizophrenia Bulletin, 42(2), 318–326. https://doi.org/10.1093/schbul/sbv114.
Mulert, C., Kirsch, V., Pascual-marqui, R., Mccarley, R. W., & Spencer, J. (2011). Long-range synchrony of gamma oscillations and auditory hallucination symptoms in schizophrenia. International Journal of Psychophysiology, 79(1), 55–63. https://doi.org/10.1016/j.ijpsycho.2010.08.004.
Mulert, C., Kirsch, V., Whitford, T. J., Alvarado, J., Pelavin, P., McCarley, R. W., et al. (2012). Hearing voices: a role of interhemispheric auditory connectivity? World Journal of Biological Psychiatry, 13(2), 153–158. https://doi.org/10.3109/15622975.2011.570789.
Palaniyappan, L., Simmonite, M., White, T. P., Liddle, E. B., & Liddle, P. F. (2013). Neural primacy of the salience processing system in schizophrenia. Neuron, 79(4), 814–828. https://doi.org/10.1016/j.neuron.2013.06.027.
Pfeffer, C. K., Xue, M., He, M., Huang, Z. J., & Scanziani, M. (2013). Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nature Neuroscience, 16(8), 1068–1076. https://doi.org/10.1038/nn.3446.
Pittman-Polletta, B. R., Kocsis, B., Vijayan, S., Whittington, M. A., & Kopell, N. J. (2015). Brain rhythms connect impaired inhibition to altered cognition in schizophrenia. Biological Psychiatry, 77(12), 1020–1030. https://doi.org/10.1016/j.biopsych.2015.02.005.
Powers III, A. R., Kelley, M., & Corlett, P. R. (2016). Review hallucinations as top-down effects on perception. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(5), 393–400. https://doi.org/10.1016/j.bpsc.2016.04.003.
Powers, A. R., Mathys, C., & Corlett, P. R. (2017). Pavlovian conditioning–induced hallucinations result from overweighting of perceptual priors. Science, 357(August), 596–600. https://doi.org/10.1126/science.aan3458.
Roopun, A. K., Lebeau, F. E. N., Ramell, J., Cunningham, M. O., Traub, R. D., & Whittington, M. A. (2010). Cholinergic neuromodulation controls directed temporal communication in neocortex in vitro. Frontiers in Neural Circuits, 4(March), 8. https://doi.org/10.3389/fncir.2010.00008.
Ross, R. G., Hunter, S. K., McCarthy, L., Beuler, J., Hutchison, A. K., Wagner, B. D., et al. (2013). Perinatal choline effects on neonatal pathophysiology related to later schizophrenia riskic access. The American Journal of Psychiatry, 170(3), 290–298. https://doi.org/10.1158/2326-6066.CIR-13-0034.PD-L1.
Rudy, B., Fishell, G., Lee, S., & Hjerling-Leffler, J. (2011). Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Developmental Neurobiology, 71(1), 45–61. https://doi.org/10.1002/dneu.20853.
Sarter, M., Parikh, V., & Howe, W. M. (2009). Phasic acetylcholine release and the volume transmission hypothesis: time to move on. Nature Reviews. Neuroscience, 10(5), 383–390. https://doi.org/10.1038/nrn2635.
Schneider, D., Nelson, A., & Moony, R. (2014). A synaptic and circuit basis for corollary discharge in the auditory cortex. Nature, 513, 189–194.
Shergill, S. S., Brammer, M. J., Williams, S. C., Murray, R. M., & Mcguire, P. K. (2000). Mapping auditory hallucinations in schizophrenia using functional magnetic resonance imaging. Archives of General Psychiatry, 57(11), 1033–1038.
Sommer, I. E. C., Diederen, K. M. J., Blom, J. D., Willems, A., Kushan, L., Slotema, K., et al. (2008). Auditory verbal hallucinations predominantly activate the right inferior frontal area. Brain, 131(12), 3169–3177. https://doi.org/10.1093/brain/awn251.
Spencer, K. M. (2009). The functional consequences of cortical circuit abnormalities on gamma oscillations in schizophrenia: insights from computational modeling. Frontiers in Human Neuroscience, 3(October), 33. https://doi.org/10.3389/neuro.09.033.2009.
Spencer, K. M. (2011). Baseline gamma power during auditory steady-state stimulation in schizophrenia. Frontiers in Human Neuroscience, 5(January), 190. https://doi.org/10.3389/fnhum.2011.00190.
Spencer, K. M., Niznikiewicz, M. a., Nestor, P. G., Shenton, M. E., & McCarley, R. W. (2009a). Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia. BMC Neuroscience, 10, 85. https://doi.org/10.1186/1471-2202-10-85.
Spencer, K. M., Salisbury, D. F., Shenton, M. E., & Mccarley, R. W. (2009b). Gamma-band auditory steady-state responses are impared in first episode. Psychosis, 64(5), 369–375. https://doi.org/10.1016/j.biopsych.2008.02.021.
Traub, R. D., Contreras, D., Cunningham, M. O., Murray, H., LeBeau, F. E. N., Roopun, A., et al. (2005). Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. Journal of Neurophysiology, 93(4), 2194–2232. https://doi.org/10.1152/jn.00983.2004.
Tsunada, J., Baker, A. E., Christison-Lagay, K. L., Davis, S. J., & Cohen, Y. E. (2011). Modulation of cross-frequency coupling by novel and repeated stimuli in the primate ventrolateral prefrontal cortex. Frontiers in Psychology, 2(SEP), 1–14. https://doi.org/10.3389/fpsyg.2011.00217.
Urban-Ciecko, J., & Barth, A. L. (2016). Somatostatin-expressing neurons in cortical networks. Nature Reviews. Neuroscience, 17(7), 401–409. https://doi.org/10.1038/nrn.2016.53.
Van De Ven, V. G., Formisano, E., Röder, C. H., Prvulovic, D., Bittner, R. A., Dietz, M. G., et al. (2005). The spatiotemporal pattern of auditory cortical responses during verbal hallucinations. NeuroImage, 27(3), 644–655. https://doi.org/10.1016/j.neuroimage.2005.04.041.
Vercammen, A., Knegtering, H., Liemburg, E. J., Boer, J. A. d., & Aleman, A. (2010). Functional connectivity of the temporo-parietal region in schizophrenia: effects of rTMS treatment of auditory hallucinations. Journal of Psychiatric Research, 44(11), 725–731. https://doi.org/10.1016/j.jpsychires.2009.12.011.
Vierling-Claassen, D., Siekmeier, P., Stufflebeam, S., & Kopell, N. (2008). Modeling GABA alterations in schizophrenia: a link between impaired inhibition and altered gamma and beta range auditory entrainment. Journal of Neurophysiology, 99, 2656–2671. https://doi.org/10.1152/jn.00870.2007.
Wang, X. (2003). Cortical processing of temporal modulations. Speech Communication, 41(1), 107–121. https://doi.org/10.1016/S0167-6393(02)00097-3.
Waters, F. A., Badcock, J. C., Michie, P. T., & Maybery, M. T. (2006). Auditory hallucinations in schizophrenia: intrusive thoughts and forgotten memories. Cognitive Neuropsychiatry, 11, 65–83.
Waters, F., Allen, P., Aleman, A., Fernyhough, C., Woodward, T. S., Badcock, J. C., et al. (2012). Auditory hallucinations in schizophrenia and nonschizophrenia populations: a review and integrated model of cognitive mechanisms. Schizophrenia Bulletin, 38(4), 683–692. https://doi.org/10.1093/schbul/sbs045.
Whittington, M. A., Traub, R. D., Kopell, N., Ermentrout, B., & Buhl, E. H. (2000). Inhibition-based rhythms: experimental and mathematical observations on network dynamics. International journal of psychophysiology : official journal of the International Organization of Psychophysiology, 38(3), 315–336 http://www.ncbi.nlm.nih.gov/pubmed/11102670.
Xiang, Z., Huguenard, J. R., & Prince, D. A. (1998). Cholinergic switching within neocortical inhibitory networks. Science, 281(5379), 985–988. https://doi.org/10.1126/science.281.5379.985.
Zhang, S., Xu, M., Kamigaki, T., Hoang Do, J. P., Chang, W.-C., Jenvay, S., et al. (2014). Long-range and local circuits for top-down modulation of visual cortex processing. Science, 345(6197), 660–665. https://doi.org/10.1126/science.1254126.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author declares that he has no conflict of interest.
Additional information
Action Editor: P. Dayan
Rights and permissions
About this article
Cite this article
Lee, J.H. Disrupted cholinergic modulation can underlie abnormal gamma rhythms in schizophrenia and auditory hallucination. J Comput Neurosci 43, 173–187 (2017). https://doi.org/10.1007/s10827-017-0666-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10827-017-0666-4