Abstract
Layer 3 (L3) pyramidal neurons in the lateral prefrontal cortex (LPFC) of rhesus monkeys exhibit dendritic regression, spine loss and increased action potential (AP) firing rates during normal aging. The relationship between these structural and functional alterations, if any, is unknown. To address this issue, morphological and electrophysiological properties of L3 LPFC pyramidal neurons from young and aged rhesus monkeys were characterized using in vitro whole-cell patch-clamp recordings and high-resolution digital reconstruction of neurons. Consistent with our previous studies, aged neurons exhibited significantly reduced dendritic arbor length and spine density, as well as increased input resistance and firing rates. Computational models using the digital reconstructions with Hodgkin-Huxley and AMPA channels allowed us to assess relationships between demonstrated age-related changes and to predict physiological changes that have not yet been tested empirically. For example, the models predict that in both backpropagating APs and excitatory postsynaptic currents (EPSCs), attenuation is lower in aged versus young neurons. Importantly, when identical densities of passive parameters and voltage- and calcium-gated conductances were used in young and aged model neurons, neither input resistance nor firing rates differed between the two age groups. Tuning passive parameters for each model predicted significantly higher membrane resistance (R m ) in aged versus young neurons. This R m increase alone did not account for increased firing rates in aged models, but coupling these R m values with subtle differences in morphology and membrane capacitance did. The predicted differences in passive parameters (or parameters with similar effects) are mathematically plausible, but must be tested empirically.
Similar content being viewed by others
References
Amatrudo, J., Weaver, C. M., Crimins, J. L., Hof, P. R., Rosene, D. L., & Luebke, J. I. (2012). Influence of highly distinctive structural properties on the excitability of pyramidal neurons in monkey visual and prefrontal cortices. Journal of Neuroscience, 32(40), 13644–13660.
Antic, S. D., Zhou, W. L., Moore, A. R., Short, S. M., & Ikonomu, K. D. (2010). The decade of the dendritic NMDA spike. Journal of Neuroscience Research, 88(14), 2991–3001.
Bai, L., Hof, P. R., Standaert, D. G., Xing, Y., Nelson, S. E., Young, A. B., & Magnusson, K. R. (2004). Changes in the expression of the NR2B subunit during aging in macaque monkeys. Neurobiology of Aging, 25(2), 201–208.
Blalock, E. M., Porter, N. M., & Landfield, P. W. (1999). Decreased G-protein-mediated regulation and shift in calcium channel types with age in hippocampal cultures. Journal of Neuroscience, 19(19), 8674–8684.
Branco, T., & Hausser, M. (2010). The single dendritic branch as a fundamental functional unit in the nervous system. Current Opinion in Neurobiology, 20(4), 494–502.
Brown, T. H., Zador, A., Mainen, Z. F., & Claiborne, B. J. (1992). Hebbian computations in hippocampal dendrites and spines. In T. McKenna, J. Davis, & S. F. Zornetzer (Eds.), Single Neuron Computation (pp. 81–116). San Diego: Academic.
Cannon, R. C., Turner, D. A., Pyapali, G. K., & Wheal, H. V. (1998). An on-line archive of reconstructed hippocampal neurons. Journal of Neuroscience Methods, 84, 49–54.
Carnevale, N. T. (2010). IClamp experiment with custom initialization. http://www.neuron.yale.edu/ftp/ted/neuron/iclamp_experiment_with_custom_init.zip. Accessed 30 Sep 2012.
Carnevale, N. T., & Hines, M. L. (2006). The NEURON book. Cambridge: Cambridge University Press.
Carnevale, N. T., Tsai, K. Y., Claiborne, B. J., & Brown, T. H. (1997). Comparative electrotonic analysis of three classes of rat hippocampal neurons. Journal of Neurophysiology, 78(2), 703–720.
Chang, Y. M., & Luebke, J. I. (2007). Electrophysiological diversity of layer 5 pyramidal cells in the prefrontal cortex of the rhesus monkey: in vitro slice studies. Journal of Neurophysiology, 98(5), 2622–2632.
Chang, Y. M., Rosene, D. L., Killiany, R. J., Mangiamele, L. A., & Luebke, J. I. (2005). Increased action potential firing rates of layer 2/3 pyramidal cells in the prefrontal cortex are significantly related to cognitive performance in aged monkeys. Cerebral Cortex, 15, 409–418.
Constantinidis, C., Franowicz, M. N., & Goldman-Rakic, P. S. (2001). Coding specificity in cortical microcircuits: a multiple-electrode analysis of primate prefrontal cortex. Journal of Neuroscience, 21, 3646–3655.
Dickstein, D. L., Kabaso, D., Rocher, A. B., Luebke, J. I., Wearne, S. L., & Hof, P. R. (2007). Changes in the structural complexity of the aged brain. Aging Cell, 6(3), 275–284.
Dickstein, D. L., Weaver, C. M., Luebke, J. I., & Hof, P. R. (2013). Dendritic spine changes associated with normal aging. Neuroscience, 22(251), 21–32.
Duan, H., Wearne, S. L., Rocher, A. B., Macedo, A., Morrison, J. H., & Hof, P. R. (2003). Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys. Cerebral Cortex, 13(9), 950–961.
Dumitriu, D., Hao, J., Hara, Y., Kaufmann, J., Janssen, W. G., Lou, W., Rapp, P. R., & Morrison, J. H. (2010). Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. Journal of Neuroscience, 30(22), 7507–7515.
Edwards, F. A., Konnerth, A., Sakmann, B., & Takahashi, T. (1989). A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflügers Archiv, 414(5), 600–612.
Euler, T., & Denk, W. (2001). Dendritic processing. Current Opinion in Neurobiology, 11, 415–422.
Faber, E. S. L., & Sah, P. (2003). Calcium-activated potassium channels: Multiple contributions to neuronal function. The Neuroscientist, 9(3), 181–194.
Foster, T. C. (2007). Calcium homeostasis and modulation of synaptic plasticity in the aged brain. Aging Cell, 6, 319–325.
Fristoe, N. M., Salthouse, T. A., & Woodard, J. L. (1997). Examination of age-related deficits on the Wisconsin Card Sorting Test. Neuropsychology, 11, 428–436.
Frolkis, V. V., Martynenko, O. A., & Timchenko, A. N. (1989). Age-related changes in the function of somatic membrane potassium channels of neurons in the mollusc Lymnaea stagnalis. Mechanisms of Ageing and Development, 47(1), 47–54.
Fu, Y., Yu, S., Ma, Y., Wang, Y., & Zhou, Y. (2013). Functional degradation of the primary visual cortex during early senescence in rhesus monkeys. Cerebral Cortex, 23(12), 2923–2931.
Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the primate dorsolateral prefrontal cortex. Journal of Neurophysiology, 61, 331–349.
Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1990). Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. Journal of Neurophysiology, 63(4), 814–831.
Gallagher, M., & Rapp, P. R. (1997). The use of animal models to study the effects of aging on cognition. Annual Review of Psychology, 48, 339–370.
Geisser, S., & Greenhouse, S. W. (1958). An extension of Box's result on the use of the F distribution in multivariate analysis. Annals of Mathematical Statistics, 29, 885–891.
Girden, E. R. (1992). ANOVA: repeated measures. Newbury Park: Sage Publications.
Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14, 477–485.
Hara, Y., Rapp, P. R., & Morrison, J. H. (2012). Neuronal and morphological bases of cognitive decline in aged rhesus monkeys. Age (Dordrecht, Netherlands), 34(5), 1051–1073.
Häusser, M., & Mel, B. W. (2003). Dendrites: bug or feature? Current Opinion in Neurobiology, 13(3), 372–383.
Herndon, J. G., Moss, M. B., Rosene, D., & Killiany, R. J. (1997). Patterns of cognitive decline in aged rhesus monkeys. Behavioural Brain Research, 87, 25–35.
Hines, M. L., Morse, T., Migliore, M., Carnevale, N. T., & Shepherd, G. M. (2004). ModelDB: a database to support computational neuroscience. Journal of Computational Neuroscience, 17(1), 7–11.
Hodgkin, A. L. (1948). The local electric changes associated with repetitive action in a non-medullated axon. The Journal of Physiology, 107(2), 165–181.
Hof, P. R., & Morrison, J. H. (2004). The aging brain: morphomolecular senescence of cortical circuits. Trends in Neurosciences, 27(10), 607–613.
Hof, P. R., Duan, H., Page, T. L., Einstein, M., Wicinski, B., He, Y., Erwin, J. M., & Morrison, J. H. (2002). Age-related changes in GluR2 and NMDAR1 glutamate receptor subunit protein immunoreactivity in corticocortically projecting neurons in macaque and patas monkeys. Brain Research, 928(1–2), 175–186.
Kabaso, D., Coskren, P. J., Henry, B. I., Hof, P. R., & Wearne, S. L. (2009). The electrotonic structure of pyramidal neurons contributing to prefrontal cortical circuits in macaque monkeys is significantly altered in aging. Cerebral Cortex, 19(10), 2248–2268.
Krichmar, J. L., Nasuto, S. J., Scorcioni, R., Washington, S. D., & Ascoli, G. A. (2002). Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: a simulation study. Brain Research, 941, 11–28.
Leventhal, A. G., Wang, Y., Pu, M., Zhou, Y., & Ma, Y. (2003). GABA and its agonists improved visual cortical function in senescent monkeys. Science, 300(5620), 812–815.
London, M., & Häusser, M. (2005). Dendritic computation. Annual Review of Neuroscience, 28, 503–532.
Losonczy, A., Makara, J. K., & Magee, J. C. (2008). Compartmentalized dendritic plasticity and input feature storage in neurons. Nature, 452, 436–441.
Luebke, J. I., & Amatrudo, J. M. (2012). Age-related increase of sIAHP in prefrontal pyramidal cells of monkeys: relationship to cognition. Neurobiology of Aging, 33(6), 1085–1095.
Luebke, J. I., Chang, Y. M., Moore, T. L., & Rosene, D. L. (2004). Normal aging results in decreased synaptic excitation and increased synaptic inhibition of layer 2/3 pyramidal cells in the monkey prefrontal cortex. Neuroscience, 125(1), 277–288.
Luebke, J. I., Barbas, H., & Peters, A. (2010). Effects of normal aging on prefrontal area 46 in the rhesus monkey. Brain Research Reviews, 62(2), 212–232.
Magee, J. C. (2000). Dendritic integration of excitatory synaptic input. Nature Reviews Neuroscience, 1(3), 181–190.
Mainen, Z. F., & Sejnowski, T. J. (1996). Influence of dendritic structure on firing patterns in model neocortical neurons. Nature, 382, 363–366.
Mainen, Z. F., Joerges, J., Huguenard, J. R., & Sejnowski, T. J. (1995). A model of spike initiation in neocortical pyramidal neurons. Neuron, 15(6), 1427–1439.
Marder, E., & Goaillard, J. M. (2006). Variability, compensation and homeostasis in neuron and network function. Nature Reviews Neuroscience, 7(7), 563–574.
Migliore, M., & Shepherd, G. M. (2002). Emerging rules for the distributions of active dendritic conductances. Nature Reviews Neuroscience, 3(5), 362–370.
Moore, T. L., Killiany, R. J., Herndon, J. G., Rosene, D. L., & Moss, M. B. (2003). Impairment of abstraction and set shifting in aged rhesus monkeys. Neurobiology of Aging, 24, 125–134.
Morrison, J. H., & Baxter, M. G. (2012). The ageing cortical synapse: hallmarks and implications for cognitive decline. Nature Reviews Neuroscience, 13(4), 240–250.
Niesen, C. E., Baskys, A., & Carlen, P. L. (1988). Reversed ethanol effects on potassium conductances in aged hippocampal dentate granule neurons. Brain Research, 445(1), 137–141.
Norenberg, A., Hu, H., Vida, I., Bartos, M., & Jonas, P. (2010). Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons. Proceedings of the National Academy of Sciences of the United States of America, 107(2), 894–899.
Oh, M. M., Oliveira, F. A., Waters, J., & Disterhoft, J. F. (2013). Altered calcium metabolism in aging CA1 hippocampal pyramidal neurons. Journal of Neuroscience, 33(18), 7905–7911.
Page, T. L., Einstein, M., Duan, H., He, Y., Flores, T., Rolshud, D., Erwin, J. M., Wearne, S. L., Morrison, J. H., & Hof, P. R. (2002). Morphological alterations in neurons forming corticocortical projections in the neocortex of aged patas monkeys. Neuroscience Letters, 317, 37–41.
Peters, A. (2002). Structural changes that occur during normal aging of primate cerebral hemispheres. Neuroscience and Biobehavioral Reviews, 26(7), 733–741.
Porter, N. M., Thibault, O., Thibault, V., Chen, K. C., & Landfield, P. W. (1997). Calcium channel density and hippocampal cell death with age in long-term culture. Journal of Neuroscience, 17(14), 5629–5639.
Rinzel, J., & Ermentrout, B. (1998). Analysis of neural excitability and oscillations. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling (2nd ed., pp. 251–291). Cambridge: MIT Press.
Rodriguez, A., Ehlenberger, D. B., Hof, P. R., & Wearne, S. L. (2006). Rayburst sampling, an algorithm for automated three-dimensional shape analysis from laser scanning microscopy images. Nature Protocols, 1, 2152–2161.
Rodriguez, A., Ehlenberger, D. B., Dickstein, D. L., Hof, P. R., & Wearne, S. L. (2008). Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS One, 3(4), e1997.
Rodriguez, A., Ehlenberger, D. B., Hof, P. R., & Wearne, S. L. (2009). Three-dimensional neuron tracing by voxel scooping. Journal of Neuroscience Methods, 184(1), 169–175.
Ross, W. N. (2012). Understanding calcium waves and sparks in central neurons. Nature Reviews Neuroscience, 13(3), 157–168.
Rumbell, T., Draguljic, D., Luebke, J. I., Hof, P. R., & Weaver, C. M. (2014). Automatic fitness function selection for compartment model optimization. BMC Neuroscience, 15(Suppl 1), O5.
Schaefer, A. T., Larkum, M. E., Sakmann, B., & Roth, A. (2003). Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. Journal of Neurophysiology, 89(6), 3143–3154.
Schmolesky, M. T., Wang, Y., Creel, D. J., & Leventhal, A. G. (2000). Abnormal retinotopic organization of the dorsal lateral geniculate nucleus of the tyrosinase-negative albino cat. The Journal of Comparative Neurology, 427(2), 209–219.
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675.
Skinner, F. K. (2013). Moving beyond Type I and Type II neuron types. F1000Res, 2, 19.
Stratford, K., Mason, A., Larkman, A., Major, G., & Jack, J. (1989). The modeling of pyramidal neurons in the visual cortex. In R. Durbin, C. Miall, & G. Mitchison (Eds.), The Computing Neuron (pp. 296–321). London: Addison-Wesley.
Stuart, G., & Spruston, N. (1998). Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. Journal of Neuroscience, 18(10), 3501–3510.
Thibault, O., & Landfield, P. W. (1996). Increase in single L-type calcium channels in hippocampal neurons during aging. Science, 272, 1017–1020.
Thibault, O., Hadley, R., & Landfield, P. W. (2001). Elevated postsynaptic [Ca2+]i and L-type calcium channel activity in aged hippocampal neurons: relationship to impaired synaptic plasticity. Journal of Neuroscience, 21, 9744–9756.
Thibault, O., Gant, J. C., & Landfield, P. W. (2007). Expansion of the calcium hypothesis of brain aging and Alzheimer's disease: minding the store. Aging Cell, 6(3), 307–317.
Thurbon, D., Luscher, H. R., Hofstetter, T., & Redman, S. J. (1998). Passive electrical properties of ventral horn neurons in rat spinal cord slices. Journal of Neurophysiology, 80(1), 2485–2502.
Traub, R. D., Buhl, E. H., Gloveli, T., & Whittington, M. A. (2003). Fast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent Na + conductance or by blocking BK channels. Journal of Neurophysiology, 89(2), 909–921.
Trevelyan, A. J., & Jack, J. (2002). Detailed passive cable models of layer 2/3 pyramidal cells in rat visual cortex at different temperatures. The Journal of Physiology, 593(2), 623–636.
Tsai, K. Y., Carnevale, N. T., Claiborne, B. J., & Brown, T. H. (1994). Efficient mapping from neuroanatomical to electrotonic space. Network, 5, 21–46.
van Elburg, R. A., & van Ooyen, A. (2010). Impact of dendritic size and dendritic topology on burst firing in pyramidal cells. PLoS Computational Biology, 6(5), e1000781.
Vetter, P., Roth, A., & Hausser, M. (2001). Propagation of action potentials in dendrites depends on dendritic morphology. Journal of Neurophysiology, 85(2), 926–937.
Wang, M., Gamo, N. J., Yang, Y., Jin, L. E., Wang, X. J., Laubach, M., Mazer, J. A., Lee, D., & Arnsten, A. F. (2011). Neuronal basis of age-related working memory decline. Nature, 476(7359), 210–213.
Wearne, S. L., Rodriguez, A., Ehlenberger, D. B., Rocher, A. B., Henderson, S. C., & Hof, P. R. (2005). New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience, 136(3), 661–680.
Weaver, C. M., & Wearne, S. L. (2008). Neuronal firing sensitivity to morphologic and active membrane parameters. PLoS Computational Biology, 4, e11.
Wilson, I. A., Ikonen, S., Gallagher, M., Eichenbaum, H., & Tanila, H. (2005). Age-associated alterations of hippocampal place cells are subregion specific. Journal of Neuroscience, 25(29), 6877–6886.
Zhang, J., Wang, X., Wang, Y., Fu, Y., Liang, Z., Ma, Y., & Leventhal, A. G. (2008). Spatial and temporal sensitivity degradation of primary visual cortical cells in senescent rhesus monkeys. The European Journal of Neuroscience, 28(1), 201–207.
Acknowledgments
Special thanks to Alfredo Rodriguez and Douglas Ehlenberger for development and support of software tools used in 3D reconstructions and morphometric analyses. This work was supported by the National Institutes of Health (grant numbers P01 AG00001, R01 AG025062, R01 AG035071, R01 MH071818, and R01 DC05669).
Conflict of interest
The authors declare that they have no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Additional information
Action Editor: Alain Destexhe
We dedicate this article to Susan L. Wearne, our friend, colleague, and mentor, who passed away in September 2009.
Rights and permissions
About this article
Cite this article
Coskren, P.J., Luebke, J.I., Kabaso, D. et al. Functional consequences of age-related morphologic changes to pyramidal neurons of the rhesus monkey prefrontal cortex. J Comput Neurosci 38, 263–283 (2015). https://doi.org/10.1007/s10827-014-0541-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10827-014-0541-5