Abstract
The network of coupled neurons in the pre-Bötzinger complex (pBC) of the medulla generates a bursting rhythm, which underlies the inspiratory phase of respiration. In some of these neurons, bursting persists even when synaptic coupling in the network is blocked and respiratory rhythmic discharge stops. Bursting in inspiratory neurons has been extensively studied, and two classes of bursting neurons have been identified, with bursting mechanism depends on either persistent sodium current or changes in intracellular Ca2+, respectively. Motivated by experimental evidence from these intrinsically bursting neurons, we present a two-compartment mathematical model of an isolated pBC neuron with two independent bursting mechanisms. Bursting in the somatic compartment is modeled via inactivation of a persistent sodium current, whereas bursting in the dendritic compartment relies on Ca2+ oscillations, which are determined by the neuromodulatory tone. The model explains a number of conflicting experimental results and is able to generate a robust bursting rhythm, over a large range of parameters, with a frequency adjusted by neuromodulators.
Similar content being viewed by others
References
Andrews, S. B., Leapman, R. D., Landis, D. M., & Reese, T. S. (1988). Activity-dependent accumulation of calcium in Purkinje cell dendritic spines. Proceedings of the National Academy of Sciences of the United States of America, 85, 1682–1685.
Arata, A., Onimaru, H., & Homma, I. (1998). The adrenergic modulation of firings of respiratory rhythm-generating neurons in medulla-spinal cord preparation from newborn rat. Experimental Brain Research, 119, 399–408.
Bell, H. J., Inoue, T., Shum, K., Luk, C., & Syed, N. I. (2007). Peripheral oxygen-sensing cells directly modulate the output of an identified respiratory central pattern generating neuron. The European Journal of Neuroscience, 25, 3537–3550.
Brown, C. H., Ludwig, M., & Leng, G. (1998). kappa-opioid regulation of neuronal activity in the rat supraoptic nucleus in vivo. The Journal of Neuroscience, 18, 9480–9488.
Butera, R. J., Jr., Rinzel, J., & Smith, J. C. (1999). Models of respiratory rhythm generation in the pre-Botzinger complex. I. Bursting pacemaker neurons. Journal of Neurophysiology, 82, 382–397.
Cho, H., Kim, M. S., Shim, W. S., Yang, Y. D., Koo, J., & Oh, U. (2003). Calcium-activated cationic channel in rat sensory neurons. The European Journal of Neuroscience, 17, 2630–2638.
Czarnecki, A., Magloire, V., & Streit, J. (2009). Modulation of intrinsic spiking in spinal cord neurons. Journal of Neurophysiology, 102, 2441–2452.
Del Negro, C. A., Johnson, S. M., Butera, R. J., & Smith, J. C. (2001). Models of respiratory rhythm generation in the pre-Botzinger complex. III. Experimental tests of model predictions. Journal of Neurophysiology, 86, 59–74.
Del Negro, C. A., Morgado-Valle, C., & Feldman, J. L. (2002a). Respiratory rhythm: an emergent network property? Neuron, 34, 821–830.
Del Negro, C. A., Koshiya, N., Butera, R. J., Jr., & Smith, J. C. (2002b). Persistent sodium current, membrane properties and bursting behavior of pre-botzinger complex inspiratory neurons in vitro. Journal of Neurophysiology, 88, 2242–2250.
Del Negro, C. A., Morgado-Valle, C., Hayes, J. A., Mackay, D. D., Pace, R. W., Crowder, E. A., et al. (2005). Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation. The Journal of Neuroscience, 25, 446–453.
Doi, A., & Ramirez, J. M. (2008). Neuromodulation and the orchestration of the respiratory rhythm. Respiratory Physiology & Neurobiology, 164, 96–104.
Elsen, F. P., & Ramirez, J. M. (1998). Calcium currents of rhythmic neurons recorded in the isolated respiratory network of neonatal mice. The Journal of Neuroscience, 18, 10652–10662.
Elsen, F. P., & Ramirez, J. M. (2005). Postnatal development differentially affects voltageactivated calcium currents in respiratory rhythmic versus nonrhythmic neurons of the pre-Botzinger complex. Journal of Neurophysiology, 94, 1423–1431.
Ermentrout, B. (2002). Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. Philadelphia: Society for Industrial and Applied Mathematics.
Fujii, M., Umezawa, K., & Arata, A. (2004). Dopaminergic modulation on respiratory rhythm in rat brainstem-spinal cord preparation. Neuroscience Research, 50, 355–359.
Funk, G. D., Smith, J. C., & Feldman, J. L. (1993). Generation and transmission of respiratory oscillations in medullary slices: role of excitatory amino acids. Journal of Neurophysiology, 70, 1497–1515.
Helliwell, R. M., & Large, W. A. (1997). Alpha 1-adrenoceptor activation of a non-selective cation current in rabbit portal vein by 1, 2-diacyl-sn-glycerol. Journal de Physiologie, 499(Pt 2), 417–428.
Herlenius, E., & Lagercrantz, H. (1999). Adenosinergic modulation of respiratory neurones in the neonatal rat brainstem in vitro. Journal de Physiologie, 518(Pt 1), 159–172.
Hilaire, G., Viemari, J. C., Coulon, P., Simonneau, M., & Bevengut, M. (2004). Modulation of the respiratory rhythm generator by the pontine noradrenergic A5 and A6 groups in rodents. Respiratory Physiology & Neurobiology, 143, 187–197.
Hill, A. J., Hinton, J. M., Cheng, H., Gao, Z., Bates, D. O., Hancox, J. C., et al. (2006). A TRPC-like non-selective cation current activated by alpha 1-adrenoceptors in rat mesenteric artery smooth muscle cells. Cell Calcium, 40, 29–40.
Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal de Physiologie, 117, 500–544.
Johnson, S. M., Smith, J. C., Funk, G. D., & Feldman, J. L. (1994). Pacemaker behavior of respiratory neurons in medullary slices from neonatal rat. Journal of Neurophysiology, 72, 2598–2608.
Johnson, R. A., Johnson, S. M., & Mitchell, G. S. (1998). Catecholaminergic modulation of respiratory rhythm in an in vitro turtle brain stem preparation. Journal of Applied Physiology, 85, 105–114.
Koizumi, H., & Smith, J. C. (2008). Persistent Na+ and K+-dominated leak currents contribute to respiratory rhythm generation in the pre-Botzinger complex in vitro. The Journal of Neuroscience, 28, 1773–1785.
Krnjevic, K. (1999). Early effects of hypoxia on brain cell function. Croatian Medical Journal, 40, 375–380.
Li, Y. X., & Rinzel, J. (1994). Equations for InsP3 receptor-mediated [Ca2+]i oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. Journal of Theoretical Biology, 166, 461–473.
Llona, I., & Eugenin, J. (2005). Central actions of somatostatin in the generation and control of breathing. Biological Research, 38, 347–352.
Lopez-Barneo, J., Ortega-Saenz, P., Pardal, R., Pascual, A., & Piruat, J. I. (2008). Carotid body oxygen sensing. The European Respiratory Journal, 32, 1386–1398.
Marder, E. (1988). Modulating a neuronal network. Nature, 335, 296–297.
Martin, E. D., Fernandez, M., Perea, G., Pascual, O., Haydon, P. G., Araque, A., et al. (2007). Adenosine released by astrocytes contributes to hypoxia-induced modulation of synaptic transmission. Glia, 55, 36–45.
Martone, M. E., Zhang, Y., Simpliciano, V. M., Carragher, B. O., & Ellisman, M. H. (1993). Threedimensional visualization of the smooth endoplasmic reticulum in Purkinje cell dendrites. The Journal of Neuroscience, 13, 4636–4646.
Mironov, S. L. (2008). Metabotropic glutamate receptors activate dendritic calcium waves and TRPM channels which drive rhythmic respiratory patterns in mice. Journal de Physiologie, 586, 2277–2291.
Morgado-Valle, C., Beltran-Parrazal, L., DiFranco, M., Vergara, J. L., & Feldman, J. L. (2008). Somatic Ca2+ transients do not contribute to inspiratory drive in preBotzinger Complex neurons. Journal de Physiologie, 586, 4531–4540.
Nieber, K. (1999). Hypoxia and neuronal function under in vitro conditions. Pharmacology & Therapeutics, 82, 71–86.
Onimaru, H., Ballanyi, K., & Richter, D. W. (1996). Calcium-dependent responses in neurons of the isolated respiratory network of newborn rats. Journal de Physiologie, 491(Pt 3), 677–695.
Onimaru, H., Shamoto, A., & Homma, I. (1998). Modulation of respiratory rhythm by 5-HT in the brainstem-spinal cord preparation from newborn rat. Pflugers Archiv, 435, 485–494.
Pace, R. W., Mackay, D. D., Feldman, J. L., & Del Negro, C. A. (2007). Inspiratory bursts in the preBotzinger complex depend on a calcium-activated non-specific cation current linked to glutamate receptors in neonatal mice. Journal de Physiologie, 582, 113–125.
Pena, F., & Aguileta, M. A. (2007). Effects of riluzole and flufenamic acid on eupnea and gasping of neonatal mice in vivo. Neuroscience Letters, 415, 288–293.
Pena, F., Parkis, M. A., Tryba, A. K., & Ramirez, J. M. (2004). Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia. Neuron, 43, 105–117.
Pena, F., & Ramirez, J. M. (2005). Hypoxia-induced changes in neuronal network properties. Molecular Neurobiology, 32, 251–283.
Ptak, K., & Hilaire, G. (1999). Central respiratory effects of substance P in neonatal mice: an in vitro study. Neuroscience Letters, 266, 189–192.
Ptak, K., Yamanishi, T., Aungst, J., Milescu, L. S., Zhang, R., Richerson, G. B., et al. (2009). Raphe neurons stimulate respiratory circuit activity by multiple mechanisms via endogenously released serotonin and substance P. The Journal of Neuroscience, 29, 3720–3737.
Purvis, L. K., Smith, J. C., Koizumi, H., & Butera, R. J. (2007). Intrinsic bursters increase the robustness of rhythm generation in an excitatory network. Journal of Neurophysiology, 97, 1515–1526.
Ramirez, J. M., Quellmalz, U. J., & Wilken, B. (1997). Developmental changes in the hypoxic response of the hypoglossus respiratory motor output in vitro. Journal of Neurophysiology, 78, 383–392.
Ramirez, J. M., Quellmalz, U. J., Wilken, B., & Richter, D. W. (1998). The hypoxic response of neurones within the in vitro mammalian respiratory network. Journal de Physiologie, 507(Pt 2), 571–582.
Richter, D. W., Bischoff, A., Anders, K., Bellingham, M., & Windhorst, U. (1991). Response of the medullary respiratory network of the cat to hypoxia. Journal de Physiologie, 443, 231–256.
Rubin, J. E. (2006). Bursting induced by excitatory synaptic coupling in nonidentical conditional relaxation oscillators or square-wave bursters. Physical Review E—Statistical, Nonlinear and Soft Matter Physics, 74, 021917.
Rubin, J. E. (2008). Emergent bursting in small networks of model conditional pacemakers in the pre-Botzinger complex. Advances in Experimental Medicine and Biology, 605, 119–124.
Rubin, J. E., Hayes, J. A., Mendenhall, J. L., & Del Negro, C. A. (2009). Calcium-activated nonspecific cation current and synaptic depression promote network-dependent burst oscillations. Proceedings of the National Academy of Sciences of the United States of America, 106, 2939–2944.
Rybak, I. A., Paton, J. F., & Schwaber, J. S. (1997). Modeling neural mechanisms for genesis of respiratory rhythm and pattern. I. Models of respiratory neurons. J Neurophysiol, 77, 1994–2006.
Saito, Y., Ezure, K., Kobayashi, M., Ito, M., Saito, K., & Osawa, M. (2002). A review of functional and structural components of the respiratory center involved in the arousal response. Sleep Medicine, 3(Suppl 2), S71–74.
Smith, J. C., Ellenberger, H. H., Ballanyi, K., Richter, D. W., & Feldman, J. L. (1991). Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science, 254, 726–729.
Spacek, J., & Harris, K. M. (1997). Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. The Journal of Neuroscience, 17, 190–203.
Thoby-Brisson, M., & Ramirez, J. M. (2000). Role of inspiratory pacemaker neurons in mediating the hypoxic response of the respiratory network in vitro. The Journal of Neuroscience, 20, 5858–5866.
Thoby-Brisson, M., & Ramirez, J. M. (2001). Identification of two types of inspiratory pacemaker neurons in the isolated respiratory neural network of mice. Journal of Neurophysiology, 86, 104–112.
Viemari, J. C., & Ramirez, J. M. (2006). Norepinephrine differentially modulates different types of respiratory pacemaker and nonpacemaker neurons. Journal of Neurophysiology, 95, 2070–2082.
Viemari, J. C., Bevengut, M., Burnet, H., Coulon, P., Pequignot, J. M., Tiveron, M. C., et al. (2004). Phox2a gene, A6 neurons, and noradrenaline are essential for development of normal respiratory rhythm in mice. The Journal of Neuroscience, 24, 928–937.
Villa, A., Sharp, A. H., Racchetti, G., Podini, P., Bole, D. G., Dunn, W. A., et al. (1992). The endoplasmic reticulum of Purkinje neuron body and dendrites: molecular identity and specializations for Ca2+ transport. Neuroscience, 49, 467–477.
Wagner, J., & Keizer, J. (1994). Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophysical Journal, 67, 447–456.
Xia, Y., & Haddad, G. G. (1999). Effect of prolonged O2 deprivation on Na+ channels: differential regulation in adult versus fetal rat brain. Neuroscience, 94, 1231–1243.
Acknowledgements
This work was supported by a grant from the National Institutes of Health (R01- HL080886) to R. J. Butera.
Author information
Authors and Affiliations
Corresponding author
Additional information
Action Editor: Charles Wilson
Rights and permissions
About this article
Cite this article
Toporikova, N., Butera, R.J. Two types of independent bursting mechanisms in inspiratory neurons: an integrative model. J Comput Neurosci 30, 515–528 (2011). https://doi.org/10.1007/s10827-010-0274-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10827-010-0274-z