Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

An index of signal mode complexity based on orthogonal transformation

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Irregular and complex signals are ubiquitous in nature. The principal aim of this paper is to develop an index, quantifying the complexity of such signals, which is based on the distribution of the strengths of its orthogonal oscillatory modes estimated by singular value decomposition. The index is first tested with simulated chaotic and/or stochastic maps and flows. Among neural data analysis, the index is first applied to a cognitive EEG data set recorded from two groups, musicians and non-musicians, during listening to music and resting state. In the gamma band (30–50 Hz), musicians showed robust changes in complexity, consistent over various scalp regions, during listening to music from resting condition, whereas such changes were minimal for non-musicians. Then the index is used to separate healthy participants from epileptic and manic patients based on spontaneous EEG analysis. Finally, it is used to track a tonic-clonic seizure EEG signal, and a conspicuous change was found in the complexity profiles of delta band (1–3.5 Hz) oscillations at the onset of seizure. We conclude that this index would be useful for quantification of a wide range of time series including neural oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baofu, P. (2007). The future of complexity: conceiving a better way to understand order and chaos. World Scientific.

  • Bhattacharya, J. (2001). Reduced degree of long-range phase synchrony in pathological human brain. Acta Neurobiologiae Experimentalis, 61, 309–318.

    CAS  PubMed  Google Scholar 

  • Bhattacharya, J., & Kanjilal, P. P. (1999). On the detection of determinism in a time series. Physica D. Nonlinear Phenomena, 132(1–2), 100–110. doi:10.1016/S0167-2789(99)00033-0.

    Article  Google Scholar 

  • Bhattacharya, J., Kanjilal, P. P., & Nizamie, S. H. (2000). Decomposition of posterior alpha rhythm. IEEE Transactions on Bio-Medical Engineering, 47(6), 738–747. doi:10.1109/10.844222.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya, J., & Petsche, H. (2001). Enhanced phase synchrony in the electroencephalograph gamma band for musicians while listening to music. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 64(1 Pt 1), 012902. doi:10.1103/PhysRevE.64.012902.

    CAS  Google Scholar 

  • Bhattacharya, J., Petsche, H., & Pereda, E. (2001a). Interdependencies in the spontaneous EEG while listening to music. International Journal of Psychophysiology, 42(3), 287–301. doi:10.1016/S0167-8760(01)00153-2.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya, J., Petsche, H., & Pereda, E. (2001b). Long-range synchrony in the gamma band: role in music perception. The Journal of Neuroscience, 21(16), 6329–6337.

    CAS  PubMed  Google Scholar 

  • Broomhead, D. S., & King, G. P. (1986). Extracting qualitative dynamics from experimental-data. Physica D. Nonlinear Phenomena, 20(2–3), 217–236. doi:10.1016/0167-2789(86)90031-X.

    Article  Google Scholar 

  • Bunde, A., Kropp, J., & Schellnhuber, H.-J. (2002). The science of disasters: Climate disruptions, heart attacks and market crashes. Berlin; New York: Springer.

    Google Scholar 

  • Deprettere, E. F. (1988). SVD and signal processing: Algorithms, applications, and architectures. Amsterdam [Netherlands]; New York New York, N.Y., U.S.A: North-Holland Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co.

    Google Scholar 

  • Edelman, G. M. (1989). The remembered present. A biological theory of consciousness. New York: Basic Books.

    Google Scholar 

  • Edmonds, B. (1999). What is complexity?: The philosophy of complexity per se with application to some examples in evolution. In F. Heylighen, & D. Aerts (Eds.), (pp. 1–18). Dordrecht, Netherlands: Kluwer Academic.

  • Golub, G. H., & Van Loan, C. F. (1996). Matrix factorizations. Baltimore, MD: The Johns Hopkins University Press.

    Google Scholar 

  • Henon, M. (1976). 2-dimensional mapping with a strange attractor. Communications in Mathematical Physics, 50(1), 69–77. doi:10.1007/BF01608556.

    Article  Google Scholar 

  • Holmes, P., Lumley, J. L., & Berkooz, G. (2008). Turbulence, coherent structures, dynamical systems and symmetry. Cambridge University Press.

  • Hornero, R., Escudero, J., Fernandez, A., Poza, J., & Gomez, C. (2008). Spectral and nonlinear analyses of MEG background activity in patients with Alzheimer’s disease. IEEE Transactions on Bio-Medical Engineering, 55(6), 1658–1665. doi:10.1109/TBME.2008.919872.

    Article  PubMed  Google Scholar 

  • Hu, X., & Nenov, V. (2004). Robust measure for characterizing generalized synchronization. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 69(2), 7. doi:10.1103/PhysRevE.69.026206.

    Google Scholar 

  • Kaczmarek, L. K., & Babloyantz, A. (1977). Spatiotemporal patterns in epileptic seizures. Biological Cybernetics, 26(4), 199–208. doi:10.1007/BF00366591.

    Article  CAS  PubMed  Google Scholar 

  • Kanjilal, P. P., Bhattacharya, J., & Saha, G. (1999). Robust method for periodicity detection and characterization of irregular cyclical series in terms of embedded periodic components. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 59(4), 4013–4025. doi:10.1103/PhysRevE.59.4013.

    CAS  Google Scholar 

  • Kantz, H., Kurths, J., & Mayer-Kress, G. (1998). Nonlinear analysis of physiological data. Berlin; New York: Springer.

    Google Scholar 

  • Kantz, H., & Schreiber, T. (2004). Nonlinear time series analysis (2nd ed.). Cambridge, UK; New York: Cambridge University Press.

    Google Scholar 

  • Lempel, A., & Ziv, J. (1976). Complexity of finite sequences. IEEE Transactions on Information Theory, 22(1), 75–81. doi:10.1109/TIT.1976.1055501.

    Article  Google Scholar 

  • Mackey, M. C., & Glass, L. (1977). Oscillation and chaos in physiological control-systems. Science, 197(4300), 287–288. doi:10.1126/science.267326.

    Article  CAS  PubMed  Google Scholar 

  • May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature, 261(5560), 459–467. doi:10.1038/261459a0.

    Article  CAS  PubMed  Google Scholar 

  • Mees, A. I., Rapp, P. E., & Jennings, L. S. (1987). Singular-value decomposition and embedding dimension. Physical Review A, 36(1), 340–346. doi:10.1103/PhysRevA.36.340.

    Article  PubMed  Google Scholar 

  • Nicolis, G., & Nicolis, C. (2007). Foundations of complex systems: Nonlinear dynamics, statistical physics, information and prediction. World Scientific Publishing Company.

  • Pincus, S. (1995). Approximate entropy (Apen) as a complexity measure. Chaos (Woodbury, N.Y.), 5(1), 110–117. doi:10.1063/1.166092.

    Article  Google Scholar 

  • Quian Quiroga, R., Blanco, S., Rosso, O. A., Garcia, H., & Rabinowicz, A. (1997). Searching for hidden information with Gabor transform in generalized tonic-clonic seizures. Electroencephalography and Clinical Neurophysiology, 103(4), 434–439. doi:10.1016/S0013-4694(97)00031-X.

    Article  CAS  PubMed  Google Scholar 

  • Rapp, P. E., Cellucci, C. J., Watanabe, T. A. A., & Albano, A. M. (2005). Quantitative characterization of tide complexity of multichannel human EEGs. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 15(5), 1737–1744. doi:10.1142/S0218127405012764.

    Article  Google Scholar 

  • Rosso, O. A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schurmann, M., et al. (2001). Wavelet entropy: a new tool for analysis of short duration brain electrical signals. Journal of Neuroscience Methods, 105(1), 65–75. doi:10.1016/S0165-0270(00)00356-3.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber, T., & Schmitz, A. (1996). Improved surrogate data for nonlinearity tests. Physical Review Letters, 77(4), 635–638. doi:10.1103/PhysRevLett.77.635.

    Article  CAS  PubMed  Google Scholar 

  • Trefethen, L. N., & Bau, D. (1997). Numerical linear algebra. Philadelphia: SIAM.

    Google Scholar 

  • van den Broek, P. L. C., van Egmond, J., van Rijn, C. M., Takens, F., Coenen, A. M. L., & Booij, L. (2005). Feasibility of real-time calculation of correlation integral derived statistics applied to EEG time series. Physica D. Nonlinear Phenomena, 203(3–4), 198–208. doi:10.1016/j.physd.2005.03.012.

    Google Scholar 

Download references

Acknowledgments

The authors thank Rodrigo Quian Quiroga for the data from the epileptic patient used in Section 3.2.3. The research is supported by JST.ERATO Shimojo project (J.B.). E. Pereda acknowledges the financial support of Canary Government through the grant PI042005/005. Author Contributions: J.B. conceived the proposed index and performed the computations; J.B. and E.P. wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydeep Bhattacharya.

Additional information

Action Editor: Rob Kass

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, J., Pereda, E. An index of signal mode complexity based on orthogonal transformation. J Comput Neurosci 29, 13–22 (2010). https://doi.org/10.1007/s10827-009-0155-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-009-0155-5

Keywords

Navigation