Abstract
Neuronal responses are often characterized by the firing rate as a function of the stimulus mean, or the f–I curve. We introduce a novel classification of neurons into Types A, B−, and B+ according to how f–I curves are modulated by input fluctuations. In Type A neurons, the f–I curves display little sensitivity to input fluctuations when the mean current is large. In contrast, Type B neurons display sensitivity to fluctuations throughout the entire range of input means. Type B− neurons do not fire repetitively for any constant input, whereas Type B+ neurons do. We show that Type B+ behavior results from a separation of time scales between a slow and fast variable. A voltage-dependent time constant for the recovery variable can facilitate sensitivity to input fluctuations. Type B+ firing rates can be approximated using a simple “energy barrier” model.
Similar content being viewed by others
References
Arfken, G. B., & Weber, H. -J. (1995). Mathematical methods for physicists (4th ed.). San Diego: Academic.
Arsiero, M., Luscher, H. R., Lundstrom, B. N., & Giugliano, M. (2007). The impact of input fluctuations on the frequency-current relationships of layer 5 pyramidal neurons in the rat medial prefrontal cortex. The Journal of Neuroscience, 27, 3274–3284. doi:10.1523/JNEUROSCI.4937-06.2007.
Benda, J., Longtin, A., & Maler, L. (2005). Spike-frequency adaptation separates transient communication signals from background oscillations. The Journal of Neuroscience, 25, 2312–2321. doi:10.1523/JNEUROSCI.4795-04.2005.
Chance, F. S., Abbott, L. F., & Reyes, A. D. (2002). Gain modulation from background synaptic input. Neuron, 35, 773–782. doi:10.1016/S0896-6273(02)00820-6.
Connor, J. A., & Stevens, C. F. (1971). Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. The Journal of Physiology, 213, 31–53.
Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience : Computational and mathematical modeling of neural systems. Cambridge, MA: Massachusetts Institute of Technology Press.
Destexhe, A., Rudolph, M., Fellous, J. M., & Sejnowski, T. J. (2001). Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience, 107, 13–24. doi:10.1016/S0306-4522(01)00344-X.
Destexhe, A., Rudolph, M., & Pare, D. (2003). The high-conductance state of neocortical neurons in vivo. Nature Reviews. Neuroscience, 4, 739–751. doi:10.1038/nrn1198.
DeVille, R. E., Vanden-Eijnden, E., & Muratov, C. B. (2005). Two distinct mechanisms of coherence in randomly perturbed dynamical systems. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 72, 031105. doi:10.1103/PhysRevE.72.031105.
Ermentrout, B. (1998). Linearization of F–I curves by adaptation. Neural Computation, 10, 1721–1729. doi:10.1162/089976698300017106.
Fairhall, A. L., Lewen, G. D., Bialek, W., & de Ruyter Van Steveninck, R. R. (2001). Efficiency and ambiguity in an adaptive neural code. Nature, 412, 787–792. doi:10.1038/35090500.
Fellous, J. M., Rudolph, M., Destexhe, A., & Sejnowski, T. J. (2003). Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience, 122, 811–829. doi:10.1016/j.neuroscience.2003.08.027.
Fleidervish, I. A., Friedman, A., & Gutnick, M. J. (1996). Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices. The Journal of Physiology, 493(Pt 1), 83–97.
Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models : Single neurons, populations, plasticity. Cambridge, UK: Cambridge University Press.
Gutkin, B. S., & Ermentrout, G. B. (1998). Dynamics of membrane excitability determine interspike interval variability: a link between spike generation mechanisms and cortical spike train statistics. Neural Computation, 10, 1047–1065. doi:10.1162/089976698300017331.
Higgs, M. H., Slee, S. J., & Spain, W. J. (2006). Diversity of gain modulation by noise in neocortical neurons: regulation by the slow afterhyperpolarization conductance. The Journal of Neuroscience, 26, 8787–8799. doi:10.1523/JNEUROSCI.1792-06.2006.
Hodgkin, A. L. (1948). The local electric changes associated with repetitive action in a non-medullated axon. The Journal of Physiology, 107, 165–181.
Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.
Hong, S., Aguera y Arcas, B., & Fairhall, A. L. (2007). Single neuron computation: from dynamical system to feature detector. Neural Computation, 19, 3133–3172. doi:10.1162/neco.2007.19.12.3133.
Hong, S., Lundstrom, B. N., & Fairhall, A. L. (2008). Intrinsic gain modulation and adaptive neural coding. PLoS Computational Biology, 4, e1000119. doi:10.1371/journal.pcbi.1000119.
Izhikevich, E. M. (2007). Dynamical systems in neuroscience : The geometry of excitability and bursting. Cambridge, MA: MIT Press.
Koch, C. (1999). Biophysics of computation: information processing in single neurons. New York: Oxford University Press.
Konig, P., Engel, A. K., & Singer, W. (1996). Integrator or coincidence detector? The role of the cortical neuron revisited. Trends in Neurosciences, 19, 130–137. doi:10.1016/S0166-2236(96)80019-1.
Lundstrom, B. N., & Fairhall, A. L. (2006). Decoding stimulus variance from a distributional neural code of interspike intervals. The Journal of Neuroscience, 26, 9030–9037. doi:10.1523/JNEUROSCI.0225-06.2006.
Lundstrom, B. N., Hong, S., Higgs, M. H., & Fairhall, A. L. (2008). Two computational regimes of a single-compartment neuron separated by a planar boundary in conductance space. Neural Comput, 20, 1239–1260.
Moreno, R., de la Rocha, J., Renart, A., & Parga, N. (2002). Response of spiking neurons to correlated inputs. Physical Review Letters, 89, 288101. doi:10.1103/PhysRevLett.89.288101.
Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193–213. doi:10.1016/S0006-3495(81)84782-0.
Prescott, S. A., Ratte, S., De Koninck, Y., & Sejnowski, T. J. (2006). Nonlinear interaction between shunting and adaptation controls a switch between integration and coincidence detection in pyramidal neurons. The Journal of Neuroscience, 26, 9084–9097. doi:10.1523/JNEUROSCI.1388-06.2006.
Rauch, A., La Camera, G., Luscher, H. R., Senn, W., & Fusi, S. (2003). Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like input currents. Journal of Neurophysiology, 90, 1598–1612. doi:10.1152/jn.00293.2003.
Richardson, M. J. (2004). Effects of synaptic conductance on the voltage distribution and firing rate of spiking neurons. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 69, 051918. doi:10.1103/PhysRevE.69.051918.
Rinzel, J., & Ermentrout, B. (1998). Analysis of neural excitability and oscillations. In C. Koch, I. Segev, & (Eds.), (pp. 251–291, 2nd ed.). Cambridge, Massachusetts: MIT Press.
Robinson, H. P., & Harsch, A. (2002). Stages of spike time variability during neuronal responses to transient inputs. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 66, 061902. doi:10.1103/PhysRevE.66.061902.
Rudolph, M., & Destexhe, A. (2005). An extended analytic expression for the membrane potential distribution of conductance-based synaptic noise. Neural Computation, 17, 2301–2315. doi:10.1162/0899766054796932.
Rudolph, M., & Destexhe, A. (2006). On the use of analytical expressions for the voltage distribution to analyze intracellular recordings. Neural Computation, 18, 2917–2922. doi:10.1162/neco.2006.18.12.2917.
Rush, M. E., & Rinzel, J. (1995). The potassium A-current, low firing rates and rebound excitation in Hodgkin–Huxley models. Bulletin of Mathematical Biology, 57, 899–929.
Shadlen, M. N., & Newsome, W. T. (1994). Noise, neural codes and cortical organization. Current Opinion in Neurobiology, 4, 569–579. doi:10.1016/0959-4388(94)90059-0.
Slee, S. J., Higgs, M. H., Fairhall, A. L., & Spain, W. J. (2005). Two-dimensional time coding in the auditory brainstem. The Journal of Neuroscience, 25, 9978–9988. doi:10.1523/JNEUROSCI.2666-05.2005.
Strogatz, S. H. (1994). Nonlinear dynamics and Chaos: with applications to physics, biology, chemistry, and engineering. Reading, Mass.: Addison-Wesley.
Tateno, T., & Pakdaman, K. (2004). Random dynamics of the Morris–Lecar neural model. Chaos (Woodbury, N.Y.), 14, 511–530. doi:doi:10.1063/1.1756118.
VanRullen, R., Guyonneau, R., & Thorpe, S. J. (2005). Spike times make sense. Trends in Neurosciences, 28, 1–4. doi:10.1016/j.tins.2004.10.010.
Acknowledgments
We thank Bard Ermentrout for helpful conversations during initial stages of the project at the Marine Biological Laboratory’s Methods in Computational Neuroscience 2007 course, Matthew Higgs and Michele Giugliano for helpful discussions and providing data for a figure, and Randy Powers and Sungho Hong for comments on a draft of this manuscript.
Funding
This work was supported by a Burroughs-Wellcome Careers at the Scientific Interface grant and a McKnight Scholar Award; BNL was supported by grant number F30NS055650 from the National Institute of Neurological Disorders and Stroke, the Medical Scientist Training Program at UW supported by the National Institute of General Medical Sciences, and an ARCS fellowship; WJS was supported by a VA Merit Review.
Author contributions
Conceived of, designed, and performed the simulations: BL. Analyzed the data: BL MF LS AF. Wrote the paper: BL MF WS AF. Developed the conceptual framework: BL MF LS WS AF.
Author information
Authors and Affiliations
Corresponding author
Additional information
Action Editor: Bard Ermentrout
Rights and permissions
About this article
Cite this article
Lundstrom, B.N., Famulare, M., Sorensen, L.B. et al. Sensitivity of firing rate to input fluctuations depends on time scale separation between fast and slow variables in single neurons. J Comput Neurosci 27, 277–290 (2009). https://doi.org/10.1007/s10827-009-0142-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10827-009-0142-x