Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Estimation of population firing rates and current source densities from laminar electrode recordings

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

This model study investigates the validity of methods used to interpret linear (laminar) multielectrode recordings. In computer experiments extracellular potentials from a synaptically activated population of about 1,000 pyramidal neurons are calculated using biologically realistic compartmental neuron models combined with electrostatic forward modeling. The somas of the pyramidal neurons are located in a 0.4 mm high and wide columnar cylinder, mimicking a stimulus-evoked layer-5 population in a neocortical column. Current-source density (CSD) analysis of the low-frequency part (<500 Hz) of the calculated potentials (local field potentials, LFP) based on the ‘inverse’ CSD method is, in contrast to the ‘standard’ CSD method, seen to give excellent estimates of the true underlying CSD. The high-frequency part (>750 Hz) of the potentials (multi-unit activity, MUA) is found to scale approximately as the population firing rate to the power 3/4 and to give excellent estimates of the underlying population firing rate for trial-averaged data. The MUA signal is found to decay much more sharply outside the columnar populations than the LFP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barth, D. S., & Di, S. (1991). Laminar excitability cycles in neocortex. Journal of Neurophysiology, 65, 891–898.

    PubMed  CAS  Google Scholar 

  • Beaulieu, C. (1993). Numerical data on neocortical neurons in adult rat, with special reference to the GABA population. Brain Research, 609, 284–292.

    Article  PubMed  CAS  Google Scholar 

  • Bedard, C., Kröger, H., & Destexhe, A. (2004). Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophysical Journal, 86, 1829–1842.

    Article  PubMed  CAS  Google Scholar 

  • Bedard, C., Kröger, H., & Destexhe, A. (2006). Model of low-pass filtering of local field potentials. Physical Review. E, 73, 051911.

    Article  CAS  Google Scholar 

  • Blomquist, P., Indahl, U. G., Devor, A., Ulbert, I., Einevoll, G. T., & Dale, A. M. (2006). Estimation of cortical microcircuit model from joint thalamic single-unit and cortical laminar-electrode recordings in rat whisker-barrel system. Abstracts—Society for Neuroscience, 53, 23.

    Google Scholar 

  • Buzsáki, G. (2004). Large-scale recording of neuronal ensembles. Nature Neuroscience, 7, 446–451.

    Article  PubMed  CAS  Google Scholar 

  • Einevoll, G. T., Pettersen, K. H., Devor, A., Ulbert, I., Halgren, E., & Dale, A. M. (2007). Laminar population analysis: Estimating firing rates and evoked synaptic activity from multielectrode recordings in rat barrel cortex. Journal of Neurophysiology, 97, 2174–2190.

    Article  PubMed  Google Scholar 

  • Feldmeyer, D., & Sakmann, B. (2000). Synaptic efficacy and reliability of excitatory connections between the principal neurones of the input (layer 4) and output layer (layer 5) of the neocortex. Journal of Physiology, 525, 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Gold, C., Henze, D. A., Koch, C., & Buzsáki, G. (2006). On the origin of the extracellular action potential waveform: A modeling study. Journal of Neurophysiology, 95, 3113–3128.

    Article  PubMed  CAS  Google Scholar 

  • Gold, C., Henze, D. A., & Koch, C. (2007). Using extracellular action potential recordings to constrain compartmental models. Journal of Comparative Neuroscience, 23, 39–58.

    Article  Google Scholar 

  • Grimenes, S., & Martinsen, Ø. G. (2000). Bioimpedance & bioelectricity. New York: Academic.

    Google Scholar 

  • Hagen, E. (2006). Modeling of extracellular potentials from activity in cortical neural populations. Master of Technology thesis, Norwegian University of Life Sciences.

  • Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., & Lounasmaa, O. V. (1993). Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 65, 413–497.

    Article  Google Scholar 

  • Holt, G. R., & Koch, C. (1999). Electrical interactions via the extracellular potential near cell bodies. Journal of Computational Neuroscience, 6, 169–184.

    Article  PubMed  CAS  Google Scholar 

  • Lewicki, M. S. (1998). A review of methods for spike sorting: The detection and classification of neural action potentials. Network: Computation in Neural Systems, 9, R53–R78.

    Article  CAS  Google Scholar 

  • Mainen, Z. F., & Sejnowski, T. J. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382, 363–366.

    Article  PubMed  CAS  Google Scholar 

  • Mitzdorf, U. (1985). Current source-density method and application in cat cerebral cortex: Investigation of evoked potentials and EEG phenomena. Physiological Reviews, 65, 37–100.

    PubMed  CAS  Google Scholar 

  • Moffitt, M. A., & McIntyre, C. C. (2005). Model-based analysis of cortical recording with silicon microelectrodes. Clinical Neurophysiology, 116, 2240–2250.

    Article  PubMed  Google Scholar 

  • Mountcastle, V. (1997). The columnar organization of neocortex. Brain, 120, 701–722.

    Article  PubMed  Google Scholar 

  • Nawrot, M., Aertsen, A., & Rotter, S. (1999). Single-trial estimation of neuronal firing rates: From single-neuron spike trains to population activity. Journal of Neuroscience Methods, 94, 81–92.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, C., & Freeman, J. A. (1975). Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. Journal of Neurophysiology, 38, 356–368.

    PubMed  CAS  Google Scholar 

  • Nunez, P. L., & Srinavasan, R. (2006). Electric fields of the brain: The neurophysics of EEG. Oxford: Oxford University Press.

    Google Scholar 

  • Pettersen, K. H. (2007). Electric potentials of the brain and the underlying neural activity. PhD thesis, Norwegian University of Life Sciences, Ås, Norway.

  • Pettersen, K. H., Devor, A., Ulbert, I., Dale, A. M., & Einevoll, G. T. (2006). Current-source density estimation based on inversion of electrostatic forward solution: Effects of finite extent of neuronal activity and conduc tivity discontinuities. Journal of Neuroscience Methods, 154, 116–133.

    Article  PubMed  Google Scholar 

  • Rappelsberger, P., Pockberger, H., & Petsche, H. (1981). Current source density analysis: Methods and applications to simultaneously recorded field potentials of the rabbit’s visual cortex. Pflügers Archiv, 389, 159–170.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder, C. E., Lindsley, R. W., Specht, C., Marcovici, A., Smiley, J. F., & Javitt, D. C. (2001). Somatosensory input to auditory association cortex in the macaque monkey. Journal of Neurophysiology, 85, 1322–1327.

    PubMed  CAS  Google Scholar 

  • Somogyvári, Z., Zalányi, L., Ulbert, I., & Érdi, P. (2005). Model-based source localization of exrtacellular action potentials. Journal of Neuroscience Methods, 147, 126–137.

    Article  PubMed  CAS  Google Scholar 

  • Ulbert, I., Halgren, E., Heit, G., & Karmos, G. (2001). Multi ple microelectrode-recording system for human intra cortical applications. Journal of Neuroscience Methods, 106, 69–79.

    Article  PubMed  CAS  Google Scholar 

  • Vaknin, G., DiScenna, P. G., & Teyler, T. J. (1988). A method for calculating current source density (CSD) analysis without resorting to recording sites outside the sampling volume. Journal of Neuroscience Methods, 24, 131–135.

    Article  PubMed  CAS  Google Scholar 

  • Wilent, W. B., & Contreras, D. (2004). Synaptic responses to whisker deflections in rat barrel cortex as a function of cortical layer. Journal of Neuroscience, 24, 3985–3998.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaute T. Einevoll.

Additional information

Action Editor: Alain Destexhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pettersen, K.H., Hagen, E. & Einevoll, G.T. Estimation of population firing rates and current source densities from laminar electrode recordings. J Comput Neurosci 24, 291–313 (2008). https://doi.org/10.1007/s10827-007-0056-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-007-0056-4

Keywords

Navigation