Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Minimal realizations of integrable memristor emulators

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This paper introduces two novel structures of memristor emulators. The proposed designs are obtainable in both forms of grounded and floating as required in many of the highly demanded applications. The proposed designs of memristor emulators employ single current follower differential input transconductance amplifier as active element and one grounded capacitor only. Single active element-based simpler design and good operating frequency range enhance the beauty of proposed emulators. Moreover, zero phase shift between voltage and current signals along with convergence of memristor current to zero at applied zero voltage signal further enriches the quality of proposed work. Non-ideal aspects are also well covered by incorporating detailed study on non-ideal and parasitic effects. Monte Carlo simulations are carried out to check real-time performance of proposed memristor emulators for deviations in threshold voltages of MOS transistors. PSPICE simulation results using typical 0.18 µm CMOS process parameters are utilized in the verification of presented theoretical aspects. Furthermore, experimental realization using commercially available ICs is also explored to enrich the presented idea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  2. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nat. Publ. Group 453(7191), 80 (2008)

    Google Scholar 

  3. Corinto, F., Ascoli, A.: Memristive diode bridge with LCR filter. Electron. Lett. 48(14), 824–825 (2012)

    Article  Google Scholar 

  4. Barboni L. A novel passive circuit emulator for a current-controlled memristor. Active and Passive Electronic Components. 2021; 2021.

  5. Bao, B., Yu, J., Hu, F., Liu, Z.: Generalized memristor consisting of diode bridge with first order parallel RC filter. Int. J. Bifurc. Chaos 24(11), 1450143 (2014)

    Article  MATH  Google Scholar 

  6. Kim, H., Sah, M.P., Yang, C., Cho, S., Chua, L.O.: Memristor emulator for memristor circuit applications. IEEE Trans. Circuits Syst. I Regul. Pap. 59(10), 2422–2431 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yesil, A.: Floating memristor employing single MO-OTA with hard-switching behavior. J. Circuits Syst. Comput. 28(02), 1950026 (2019)

    Article  Google Scholar 

  8. Yesil, A., Babacan, Y., Kacar, F.: A new DDCC based memristor emulator circuit and its applications. Microelectron. J. 45(3), 282–287 (2014)

    Article  Google Scholar 

  9. Sanchez-Lopez, C., Mendoza-Lopez, J., Carrasco-Aguilar, M.A., Muniz-Montero, C.: A floating analog memristor emulator circuit. IEEE Trans. Circuits Syst. II Express Briefs 61(5), 309–313 (2014)

    Google Scholar 

  10. Babacan, Y., Kacar, F.: Floating memristor emulator with subthreshold region. Analog Integr. Circ. Sig. Process 90(2), 471–475 (2017)

    Article  Google Scholar 

  11. Abuelma’atti, M.T., Khalifa, Z.J.: A new floating memristor emulator and its application in frequency-to-voltage conversion. Analog Integr. Circuits Signal Process. 86(1), 141–147 (2016)

    Article  Google Scholar 

  12. Yu, D., Iu, H.H.C., Fitch, A.L., Liang, Y.: A floating memristor emulator based relaxation oscillator. IEEE Trans. Circuits Syst. I Regul. Pap. 61(10), 2888–2896 (2014)

    Article  Google Scholar 

  13. Gul, F., Babacan, Y.: A novel OTA-based circuit model corroborated by an experimental semiconductor memristor. Microelectron. Eng. 194, 56–60 (2018)

    Article  Google Scholar 

  14. Petrovic, P.B.: Floating incremental/decremental flux-controlled memristor emulator circuit based on single VDTA. Analog Integr. Circ. Sig. Process 96(3), 417–433 (2018)

    Article  Google Scholar 

  15. Cam, Z.G., Sedef, H.: A new floating memristance simulator circuit based on second generation current conveyor. J. Circuits Syst. Comput. 26(02), 1750029 (2017)

    Article  Google Scholar 

  16. Sozen, H., Cam, U.: Electronically tunable memristor emulator circuit. Analog Integr. Circ. Sig. Process 89(3), 655–663 (2016)

    Article  Google Scholar 

  17. Babacan, Y., Kaçar, F., Gürkan, K.: A spiking and bursting neuron circuit based on memristor. Neurocomputing 203, 86–91 (2016)

    Article  Google Scholar 

  18. Babacan, Y., Kaçar, F.: Memristor emulator with spike-timing-dependent-plasticity. AEU Int. J. Electron. Commun. 73, 16–22 (2017)

    Article  Google Scholar 

  19. Ranjan, R.K., Rani, N., Pal, R., Paul, S.K., Kanyal, G.: Single CCTA based high frequency floating and grounded type of incremental/decremental memristor emulator and its application. Microelectron. J. 60, 119–128 (2017)

    Article  Google Scholar 

  20. Yesil, A., Babacan, Y., Kacar, F.: A electronically tunable memristor based on VDCC. AEU Int. J. Electron. Commun. 107, 282–290 (2019)

    Article  Google Scholar 

  21. Yesil, A.: A new grounded memristor emulator based on MOSFET-C. AEU Int. J. Electron. Commun. 91, 143–149 (2018)

    Article  Google Scholar 

  22. Sánchez-López, C., Aguila-Cuapio, L.E.: A 860 kHz grounded memristor emulator circuit. AEU Int. J. Electron. Commun. 73, 23–33 (2017)

    Article  Google Scholar 

  23. Babacan, Y., Yesil, A., Kacar, F.: Memristor emulator with tunable characteristic and its experimental results. AEU Int. J. Electron. Commun. 81, 99–104 (2017)

    Article  Google Scholar 

  24. Abuelma’atti, M.T., Khalifa, Z.J.: A new memristor emulator and its application in digital modulation. Analog Integr. Circuits Signal Process. 80(3), 577–584 (2014)

    Article  Google Scholar 

  25. Abuelma’atti, M.T., Khalifa, Z.J.: A continuous-level memristor emulator and its application in a multivibrator circuit. AEU Int. J. Electron. Commun. 69(4), 771–775 (2015)

    Article  Google Scholar 

  26. Ranjan, R.K., Raj, N., Bhuwal, N., Khateb, F.: Single DVCCTA based high frequency incremental/decremental memristor emulator and its application. AEU Int. J. Electron. Commun. 82, 177–190 (2017)

    Article  Google Scholar 

  27. Ayten, U.E., Minaei, S., Sağbaş, M.: Memristor emulator circuits using single CBTA. AEU Int. J. Electron. Commun. 82, 109–118 (2017)

    Article  Google Scholar 

  28. Taskiran, Z.G., Ayten, U.E., Sedef, H.: Dual-output operational transconductance amplifier-based electronically controllable memristance simulator circuit. Circuits Syst. Signal Process. 38(1), 26–40 (2019)

    Article  Google Scholar 

  29. Hussein, A.I., Fouda, M.E.: A simple MOS realization of current controlled memristor emulator. In: 2013 25th International Conference on Microelectronics (ICM), (2013), pp. 1–4

  30. Elwakil, A.S., Fouda, M.E., Radwan, A.G.: A simple model of double-loop hysteresis behavior in memristive elements. IEEE Trans. Circuits Syst. II Express Briefs 60(8), 487–491 (2013)

    Google Scholar 

  31. Yesil, A., Babacan, Y.: Design of memristor with hard-switching behavior employing only one CCCII and one capacitor. J. Circuits Syst. Comput. 30(09), 2150151 (2021)

    Article  Google Scholar 

  32. Gupta, S., Rai, S.K.: New grounded and floating decremental/incremental memristor emulator circuits based on CDTA and its application. Wirel. Pers. Commun. 113, 773–798 (2020)

    Article  Google Scholar 

  33. Yadav, N., Rai, S.K., Pandey, R.: New grounded and floating memristor emulator circuits using OTA and CDBA. Int. J. Circuit Theory Appl. 48(7), 1154–1179 (2020)

    Article  Google Scholar 

  34. Kanyal, G., Kumar, P., Paul, S.K., Kumar, A.: OTA based high frequency tunable resistorless grounded and floating memristor emulator circuits. AEU Int. J. Electron. Commun. 92, 124–145 (2018)

    Article  Google Scholar 

  35. Raj, A., Singh, S., Kumar, P.: Dual mode, high frequency and power efficient grounded memristor based on OTA and DVCC. Analog Integr. Circuits Signal Process. 110, 81–89 (2021)

    Article  Google Scholar 

  36. Yadav, N., Rai, S.K., Pandey, R.: Novel memristor emulators using fully balanced VDBA and grounded capacitor. Iran. J. Sci. Technol. Trans. Electr. Eng. 45(1), 229–2245 (2021)

    Article  Google Scholar 

  37. Prasad, S.S., Kumar, P., Ranjan, R.K.: Resistorless memristor emulator using CFTA and its experimental verification. IEEE Access 9, 64065–64075 (2021)

    Article  Google Scholar 

  38. Petrović, P.B.: Simple flux-controlled grounded memristor emulator circuits based on current follower. Analog Integr. Circ. Sig. Process 108(1), 215–219 (2021)

    Article  Google Scholar 

  39. Yadav, N., Rai, S.K., Pandey, R.: High frequency electronically tunable floating memristor emulators employing VDGA and grounded capacitor. Wirel. Pers. Commun. 121, 3185–3211 (2021)

    Article  Google Scholar 

  40. Bhardwaj, K., Srivastava, M.: New electronically adjustable memelement emulator for realizing the behaviour of fully-floating meminductor and memristor. Microelectron. J. 114, 105126 (2021)

    Article  Google Scholar 

  41. Kumar, A., Chaturvedi, B.: Novel CMOS CFDITA and its application as electronically tunable bistable multivibrator. In: IEEE International Conference on Signal Processing and Communication (ICSC), 2016, pp. 374–379

  42. Chaturvedi, B., Kumar, A.: Novel CMOS MO-CFDITA based fully electronically controlled square/triangular wave generator with adjustable duty cycle. IET Circuits Devices Syst. 12(6), 817–826 (2018)

    Article  Google Scholar 

  43. Tsividis, Y.: Operation and Modeling of MOS Transistor, 2nd edn. McGraw Hill Inc, Singapore (1999)

    Google Scholar 

  44. Ochs, K., Solan, E.: Sensitivity analysis of memristors based on emulation techniques. In: 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS) 2016, pp. 1–4

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Kumar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Chaturvedi, B. & Mohan, J. Minimal realizations of integrable memristor emulators. J Comput Electron 22, 504–518 (2023). https://doi.org/10.1007/s10825-022-01963-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-022-01963-0

Keywords

Navigation