Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Sliding eigenvalue decomposition-based cross-term suppression in Wigner–Ville distribution

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, a new method for the cross-term-free Wigner–Ville distribution (WVD) is proposed. The proposed method is based on sliding eigenvalue decomposition (SEVD) and the WVD which has been termed as SEVD–WVD. The SEVD decomposes the multicomponent signal into a set of monocomponent signals, and then, the WVD of analytic monocomponents is added to obtain a cross-term-free time–frequency representation. We have applied the proposed technique on clean and noisy synthetic signals in order to verify its robustness. Moreover, the SEVD–WVD is applied on speech signal to show its suitability on real-world data. The proposed method has been compared with other cross-term reduction techniques for the WVD in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Das, K., Pachori, R.B.: Schizophrenia detection technique using multivariate iterative filtering and multichannel EEG signals. Biomed. Signal Process. Control 67, 102525 (2021)

    Article  Google Scholar 

  2. Gupta, V., Pachori, R.B.: FBDM based time-frequency representation for sleep stages classification using EEG signals. Biomed. Signal Process. Control 64, 102265 (2021)

    Article  Google Scholar 

  3. Zhen, L., Gao, J., Wang, Z., Yang, Y.: Time-synchroextracting general Chirplet transform for seismic time-frequency analysis. IEEE Trans. Geosci. Remote Sens. 58(12), 8626–8636 (2020)

    Article  Google Scholar 

  4. Tu, J.H., Rowley, C.W., Kutz, J.N., Shang, J.K.: Spectral analysis of fluid flows using sub-Nyquist-rate PIV data. Exp. Fluids 55(9), 1–13 (2014)

    Article  Google Scholar 

  5. Chen, H., Yin, J., Yeh, C., Lu, Y., Yang, J.: Inverse synthetic aperture radar imaging based on time-frequency analysis through neural network. J. Electron. Imag. 29(1), 013003 (2020)

    Article  Google Scholar 

  6. Clivati, C., Mura, A., Kuttippurath, V., Levi, F., Calonico D.: Coherent Interferometry over Telecom Networks for Time-Frequency Distribution and Geophysical Sensing. In: 2020 22nd International Conference on Transparent Optical Networks (ICTON), pp. 1–4 (2020)

  7. Tiwari, S., Das, S.S.: Circularly pulse-shaped orthogonal time frequency space modulation. Electron. Lett. 56(3), 157–160 (2020)

    Article  Google Scholar 

  8. Yatabe, K., Kitamura, D.: Determined BSS based on time-frequency masking and its application to harmonic vector analysis. IEEE/ACM Trans. Audio Speech Lang. Process. 29, 1609–1625 (2021)

    Article  Google Scholar 

  9. Karan, B., Sahu, S.S., Orozco-Arroyave, J.R., Mahto, K.: Non-negative matrix factorization-based time-frequency feature extraction of voice signal for Parkinson is disease prediction. Comput. Speech Lang. 69, 101216 (2021)

    Article  Google Scholar 

  10. Gabor, D.: Theory of communication Part 1: The analysis of information. J. Inst. Electr. Eng. Part III Radio Commun. Eng. 93(26), 429–441 (1946)

    Google Scholar 

  11. Mallat, S.: A Wavelet Tour of Signal Processing. Elsevier, Amsterdam (1999)

    MATH  Google Scholar 

  12. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454(1971), 903–995 (1998)

    Article  MathSciNet  Google Scholar 

  13. Bhattacharyya, A., Singh, L., Pachori, R.B.: Fourier-Bessel series expansion based empirical wavelet transform for analysis of non-stationary signals. Dig. Signal Process. 78, 185–196 (2018)

    Article  Google Scholar 

  14. Jain, P., Pachori, R.B.: An iterative approach for decomposition of multi-component non-stationary signals based on eigenvalue decomposition of the Hankel matrix. J. Franklin Inst. 352(10), 4017–4044 (2015)

    Article  Google Scholar 

  15. Sharma, R.R., Pachori, R.B.: Time-frequency representation using IEVDHM-HT with application to classification of epileptic EEG signals. IET Sci. Meas. Technol. 12(1), 72–82 (2018)

    Article  Google Scholar 

  16. Ville, J.: Theory and Application of the Notion of Complex Signal. Rand Corp Santa Monica CA (1958)

  17. Huang, N.E., Shen, Z., Long, S.R.: A new view of nonlinear water waves: The Hilbert spectrum. Ann. Rev. Fluid Meach. 31(1), 417–457 (1999)

    Article  MathSciNet  Google Scholar 

  18. O’Neill, J.C., Flandrin, P., Williams, W.J.: On the existence of discrete Wigner distributions. IEEE Signal Process. Lett. 6(12), 304–306 (1999)

    Article  Google Scholar 

  19. Pachori, R.B., Sircar, P.: A new technique to reduce cross terms in the Wigner distribution. Dig. Signal Process. 17(2), 466–474 (2007)

    Article  Google Scholar 

  20. Boashash, B.: Time-Frequency Signal Analysis and Processing: A Comprehensive Reference. Academic Press, London (2015)

    Google Scholar 

  21. Choi, H.I., William, W.J.: Improved time-frequency representation of multicomponent signals using exponential kernels. IEEE Trans. Acoust. Speech Signal Process. 37(6), 862–871 (1989)

    Article  Google Scholar 

  22. Gonçalves, P., Baraniuk, R.G.: Pseudo affine Wigner distributions: Definition and kernel formulation. IEEE Trans. Signal Process. 46(6), 1505–1516 (1998)

    Article  MathSciNet  Google Scholar 

  23. Flandrin, P., Rioul, O.: Affine smoothing of the Wigner-Ville distribution (1990)

  24. Andria, G., Savino, M.: Interpolated smoothed pseudo Wigner-Ville distribution for accurate spectrum analysis. IEEE Trans. Instrum. Meas. 45(4), 818–823 (1996)

    Article  Google Scholar 

  25. Pachori, R.B., Nishad, A.: Cross-terms reduction in the Wigner-Ville distribution using tunable-Q wavelet transform. Signal Process. 120, 288–304 (2016)

    Article  Google Scholar 

  26. Sharma, R.R., Kalyani, A., Pachori, R.B.: An empirical wavelet transform-based approach for cross-terms-free Wigner–Ville distribution. Signal Image Video Process. 14(2), 249–256 (2020)

    Article  Google Scholar 

  27. Sharma, R.R., Pachori, R.B.: Eigenvalue decomposition of Hankel matrix-based time-frequency representation for complex signals. Circ. Syst. Signal Process. 37(8), 3313–3329 (2018)

    Article  MathSciNet  Google Scholar 

  28. Chai, Y., Zhang, X.: EMD-WVD time-frequency distribution for analysis of multi-component signals, In: Fourth International Conference on Wireless and Optical Communications (International Scoiet of Optics and Photonics), 9902, p. 99020W (2016)

  29. Liu, X., Jia, Y., He, Z., Zhou, J.: Application of EMD-WVD and particle filter for gearbox fault feature extraction and remaining useful life prediction. J. Vibroeng. 19(3), 1808–1973 (2017)

    Google Scholar 

  30. Jiangting, L.I., Kaifeng, Z., Yue, H.U.: EMD-WVD method based high-frequency current analysis of low voltage arc. In: 2018 Condition Monitoring and Diagnosis, IEEE, pp. 1–5 (2018)

  31. Panda, R., Jain, S., Tripathy, R.K., Sharma, R.R., Pachori, R.B.: Sliding mode singular spectrum analysis for the elimination of cross-terms in Wigner–Ville distribution. Circ. Syst. Signal Process. 40(3), 1207–1232 (2021)

    Article  Google Scholar 

  32. Ping, D., Zhao, P., Deng, B.: Cross-terms suppression in Wigner–Ville distribution based on image processing. In: The 2010 IEEE International Conference on Information and Automation, IEEE, pp. 2168–2171 (2010)

  33. Khan, N.A., Taj, I.A., Jaffri, M.N., Ijaz, S.: Cross-term elimination in Wigner distribution based on 2D signal processing techniques. Signal Process. 91(3), 590–599 (2011)

    Article  Google Scholar 

  34. Singh, V.K., Pachori, R.B.: Sliding Eigenvalue Decomposition for Non-stationary Signal Analysis. In: 2020 International Conference on Signal Processing and Communications, IEEE, pp. 1–5 (2020)

  35. Classen, T.A.C.M., Mecklenbräuker, W.F.G.: The Wigner distribution - a tool for time-frequency signal analysis, part I: Continuous-time signals. Philips J. Res. 35(4), (1980)

  36. Kadambe, S., Boudreaux-Bartels, G.F.: A comparison of the existence of cross terms in the Wigner distribution and the squared magnitude of the wavelet transform and the short-time Fourier transform. IEEE Trans. Signal Process. 40(10), 2498–2517 (1992)

    Article  Google Scholar 

  37. Deyle, E.R., Sugihara, G.: Generalized theorems for nonlinear state space reconstruction. PLoS ONE 3(6), e182 (2011)

    Google Scholar 

  38. Harmouche, J., Fourer, D., Auger, F., Borgnat, P., Flandrin, P.: The sliding singular spectrum analysis: A data-driven nonstationary signal decomposition tool. IEEE Trans. Signal Process. 66(1), 251–263 (2017)

    Article  MathSciNet  Google Scholar 

  39. Oppenheim, A.V., Buck, J.R., Schafer, R.W.: Discrete-Time Signal Processing, vol. 2. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  40. Flandrin, P., Baraniuk, R.G., Michel, O.: Time-frequency complexity and information. In: Proceedings of ICASSP’94, IEEE International Conference on Acoustic, Speech and Signal Processing, 3 (1994)

  41. Stanković, L.: A measure of some time-frequency distributions concentration. Signal Process. 81(3), 621–631 (2001)

    Article  Google Scholar 

  42. O’Toole J.M.: Choi-Williams method code. http://otoolej.github.io/code/fast-tfds/ (Accessed 26 May 2021)

  43. Flandrin, P.: EMD method code. http://perso.ens-lyon.fr/patrick.flandrin/emd.html (Accessed 20 Aug 2021)

  44. Kominek, J., Black, A.W.: The CMU Arctic speech databases. In: Fifth ISCA Workshop on Speech Synthesis (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kumar Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V.K., Pachori, R.B. Sliding eigenvalue decomposition-based cross-term suppression in Wigner–Ville distribution. J Comput Electron 20, 2245–2254 (2021). https://doi.org/10.1007/s10825-021-01781-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01781-w

Keywords

Navigation