Abstract
This work explores some aspects of a new and natural semantical dimension that can be accommodated within the syntax of description logics which opens up when passing from the classical truth-value interpretation to a constructive interpretation. We argue that such a strengthened interpretation is essential to represent applications with partial information adequately and to achieve consistency under abstraction as well as robustness under refinement. We introduce a constructive version of \(\mathcal{ALC}\), called \({c\mathcal{ALC}}\), for which we give a sound and complete Hilbert axiomatisation and a Gentzen tableau calculus showing finite model property and decidability.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alechina, N., Mendler, M., de Paiva, V., Ritter, E.: Categorical and Kripke semantics for constructive S4 modal logic. In: Fribourg, L. (ed.) Proc. of Computer Science Logic 2001 (CSL 2001). Lecture Notes in Computer Science, vol. 2142, pp. 292–307. Springer, New York (2001)
Artale, A., Franconi, E.: A survey of temporal extensions of description logics. Ann. Math. Artif. Intell. 30(1–4) (2001)
Artale, A., Lutz, C., Toman, D.: A description logic of change. In: Int’l Workshop on Description Logics (DL 2006), pp. 97–108 (2006)
Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)
Bellin, G., de Paiva, V., Ritter, E.: Extended Curry-Howard correspondence for a basic constructive modal logic. In: Methods for Modalities II (2001)
Benford, F.: The law of anomalous numbers. In: Proc. Amer. Phil. Soc., pp. 551–572 (1938)
Borgida, A.: Diachronic description logics. In: Int’l Workshop on Description Logics (DL 2001), pp. 106–112 (2001)
Botazzo, L., Ferrari, M., Fiorentini, C., Fiorino, G.: A constructive semantics for ALC. In: Int’l Workshop on Description Logics (DL 2007), pp. 219–226 (2007)
Brachman, R.J., McGuinness, D.L., Patel-Schneider, P.F., Resnick, L.A., Borgida, A.: Living with CLASSIC: When and How to Use a KL-ONE-Like Language. In: Principles of Semantic Networks, 401–456, Morgan Kaufmann, (1991)
Braüner, T., de Paiva, V.: Intuitionistic hybrid logic. J. Appl. Logic 4(3), 231–255 (2006) (Methods for Modalities 3 (M4M-3))
Brunet, O.: A logic for partial system description. J. Log. Comput. 14(4), 507–528 (2004)
Calvanese, D., De Giacomo, G., Lenzerini, M.: Semi-structured data with constraints and incomplete information. In: Int’l Workshop on Description Logics (DL 1998) (1998)
de Paiva, V.: Constructive description logics: what, why and how. In: Context Representation and Reasoning, Riva del Garda (2006)
Dürig, M., Studer, Th.: Probabilistic ABox reasoning: preliminary results. In: Int’l Workshop on Description Logics (DL 2005) (2005)
Ewald, W.B.: Intuitionistic tense and modal logic. J. Symb. Log. 51 (1986)
Fischer-Servi, G.: Semantics for a class of intuitionistic modal calculi. In: Dalla Chiara, M.L. (ed.) Italian Studies in the Philosophy of Science, pp. 59–72. Reidel, Dordrecht (1980)
Gabbay, D.M., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-dimensional Modal Logics. Elsevier, Amsterdam (2003)
Hölldobler, S., Nga, N.H., Khang, T.D.: The fuzzy description logic ALCFLH. In: Int’l Workshop on Description Logics (DL 2005) (2005)
Ma, Y., Hitzler, P., Lin, Z.: Paraconsistent resolution for four-valued description logics. In: Int’l Workshop on Description Logics (DL 2007) (2007)
Mendler, M., de Paiva, V.: Constructive CK for contexts. In: Serafini, L., Bouquet, P. (eds.) Context Representation and Reasoning (CRR-2005). CEUR Proceedings, vol. 13 (2005) (Also presented at the Association for Symbolic Logic Annual Meeting, Stanford University, USA, 22 March 2005)
Mendler, M., Scheele, S.: Towards constructive description logics for abstraction and refinement. Technical Report 77(2008), University of Bamberg (2008)
Mendler, M., Scheele, S.: Exponential speedup in \(\mathcal{UL}\) subsumption checking relative to general tboxes for the constructive semantics. In: Grau, B.C., Horrocks, I., Motik, B., Sattler, U. (eds.) 22nd International Workshop on Description Logics (DL 2009). CEUR Workshop Proceedings, vol. 477. CEUR, 27–30 July 2009
Odintsov, S.P., Wansing, H.: Inconsistency-tolerant description logic. Part II: a tableau algorithm for \(\mathcal{CALC}^\textsf{C}\). J. Appl. Logic 6(3), 343–360 (2008)
Paschke, A.: Typed hybrid description logic programs with order-sorted semantic web type systems on OWL and RDFS. Technical report, TU Munich (2005)
Patel-Schneider, P.F.: A four-valued semantics for terminological logics. Artif. Intell. 38, 319–351 (1989)
Plotkin, G., Stirling, C.: A framework for intuitionistic modal logics. In: Theoretical Aspects of Reasoning About Knowledge. Monterey (1986)
Sattler, U.: A concept language extended with different kinds of transitive roles. In: Görz, G., Hölldobler, S. (eds.) 20. Deutsche Jahrestagung für Künstliche Intelligenz, number 1137. Springer, New York (1996)
Simpson, A.K.: The proof theory and semantics of intuitionistic modal logic. Ph.D. thesis, University of Edinburgh (1994)
Straccia, U.: Fuzzy ALC with fuzzy concrete domains. In: Int’l Workshop on Description Logics (DL 2005) (2005)
Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, vol. 2. North-Holland, Amsterdam (1988)
Troelstra, A.S.: Realizability. In: Buss, S.R. (ed.) Handbook of Proof Theory, chapter VI, pp. 407–474. Elsevier, Amsterdam (1998)
van Dalen, D.: Intuitionistic logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 3, chapter 4, pp. 225–339. Reidel, Dordrecht (1986)
Wijesekera, D.: Constructive modal logic I. Ann. Pure Appl. Logic 50, 271–301 (1990)
Author information
Authors and Affiliations
Corresponding author
Additional information
An extended abstract of this work has been presented at the 21th International Workshop on Description Logics (DL2008).
This work is funded by the German Research Council (DFG) as part of the project SPACMODL grant No. ME 1427/4-1.
Rights and permissions
About this article
Cite this article
Mendler, M., Scheele, S. Towards Constructive DL for Abstraction and Refinement. J Autom Reasoning 44, 207–243 (2010). https://doi.org/10.1007/s10817-009-9151-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10817-009-9151-8