Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Theory Extension in ACL2(r)

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

ACL2(r) is a modified version of the theorem prover ACL2 that adds support for the irrational numbers using nonstandard analysis. It has been used to prove basic theorems of analysis, as well as the correctness of the implementation of transcendental functions in hardware. This paper presents the logical foundations of ACL2(r). These foundations are also used to justify significant enhancements to ACL2(r).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Boyer, R.S., Goldschlag, D., Kaufmann, M., Moore, J.S.: Functional instantiation in first order logic. In: Lifschitz, V. (ed.) Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy, pp. 7–26 (1991)

  2. Boyer, R.S., Moore, J.S.: A Computational Logic. Academic, Orlando (1979)

    MATH  Google Scholar 

  3. Boyer, R.S., Moore, J.S.: A Computational Logic Handbook. Academic, San Diego (1988)

    MATH  Google Scholar 

  4. Diener, F., Diener, M. (eds.): Nonstandard Analysis in Practice. Springer, Berlin Heidelberg New York (1995)

    MATH  Google Scholar 

  5. Gamboa, R., Kaufmann, M.: Nonstandard analysis in ACL2. J. Autom. Reason. 27(4), 323–351 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gamboa, R., Middleton, B.: Taylor’s formula with remainder. In: Proc of the Third International Workshop of the ACL2 Theorem Prover and its Applications (ACL2-2002), 2002

  7. Kanovei, V., Reeken, M.: Nonstandard Analysis, Axiomatically. Springer, Berlin Heidelberg New York (2004)

    MATH  Google Scholar 

  8. Kaufmann, M.: Modular proof: the fundamental theorem of calculus. In: Kaufmann, M., Manolios, P., Moore, J.S. (eds.) Computer-Aided Reasoning: ACL2 Case Studies, Chapt. 6. Kluwer, Norwell, Massachusetts (2000)

    Google Scholar 

  9. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Approach. Kluwer, Norwell, Massachusetts (2000)

    Google Scholar 

  10. Kaufmann, M., Moore, J.S.: ACL2 Documentation topic on conservativity of defchoose. Available in the ACL2 distribution since version 2.9.2 with :DOC CONSERVATIVITY-OF-DEFCHOOSE

  11. Kaufmann, M., Moore, J.S.: A precise description of the ACL2 logic. http://www.cs.utexas.edu/users/moore/publications/km97a.ps.Z

  12. Kaufmann, M., Moore, J.S.: Structured theory development for a mechanized logic. J. Autom. Reason. 26(2), 161–203 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gameiro, M., Manolios, P.: Formally verifying an algorithm based on interval arithmetic for checking transversality. In: Fifth International Workshop on the ACL2 Theorem Prover and Its Applications (ACL2-2004), 2004

  14. Nelson, E.: On-line books: internal set theory. Available on the world-wide web at http://www.math.princeton.edu/ñelson/books.html

  15. Nelson, E.: Internal set theory: a new approach to nonstandard analysis. Bull. Am. Math. Soc. 83, 1165–1198 (1977)

    Article  MATH  Google Scholar 

  16. Robert, A.: Non-Standard Analysis. Wiley, New York (1988)

    Google Scholar 

  17. Robinson, A.: Non-Standard Analysis. Princeton University Press, Princeton, New Jersey (1996)

    MATH  Google Scholar 

  18. Sawada, J., Gamboa, R.: Mechanical verification of a square root algorithm using Taylor’s theorem. In: Formal Methods in Computer-Aided Design (FMCAD’02), 2002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gamboa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamboa, R., Cowles, J. Theory Extension in ACL2(r). J Autom Reasoning 38, 273–301 (2007). https://doi.org/10.1007/s10817-006-9043-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-006-9043-0

Key words

Mathematics Subject Classifications (2000)

Navigation