Abstract
ACL2(r) is a modified version of the theorem prover ACL2 that adds support for the irrational numbers using nonstandard analysis. It has been used to prove basic theorems of analysis, as well as the correctness of the implementation of transcendental functions in hardware. This paper presents the logical foundations of ACL2(r). These foundations are also used to justify significant enhancements to ACL2(r).
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Boyer, R.S., Goldschlag, D., Kaufmann, M., Moore, J.S.: Functional instantiation in first order logic. In: Lifschitz, V. (ed.) Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy, pp. 7–26 (1991)
Boyer, R.S., Moore, J.S.: A Computational Logic. Academic, Orlando (1979)
Boyer, R.S., Moore, J.S.: A Computational Logic Handbook. Academic, San Diego (1988)
Diener, F., Diener, M. (eds.): Nonstandard Analysis in Practice. Springer, Berlin Heidelberg New York (1995)
Gamboa, R., Kaufmann, M.: Nonstandard analysis in ACL2. J. Autom. Reason. 27(4), 323–351 (2001)
Gamboa, R., Middleton, B.: Taylor’s formula with remainder. In: Proc of the Third International Workshop of the ACL2 Theorem Prover and its Applications (ACL2-2002), 2002
Kanovei, V., Reeken, M.: Nonstandard Analysis, Axiomatically. Springer, Berlin Heidelberg New York (2004)
Kaufmann, M.: Modular proof: the fundamental theorem of calculus. In: Kaufmann, M., Manolios, P., Moore, J.S. (eds.) Computer-Aided Reasoning: ACL2 Case Studies, Chapt. 6. Kluwer, Norwell, Massachusetts (2000)
Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Approach. Kluwer, Norwell, Massachusetts (2000)
Kaufmann, M., Moore, J.S.: ACL2 Documentation topic on conservativity of defchoose. Available in the ACL2 distribution since version 2.9.2 with :DOC CONSERVATIVITY-OF-DEFCHOOSE
Kaufmann, M., Moore, J.S.: A precise description of the ACL2 logic. http://www.cs.utexas.edu/users/moore/publications/km97a.ps.Z
Kaufmann, M., Moore, J.S.: Structured theory development for a mechanized logic. J. Autom. Reason. 26(2), 161–203 (2001)
Gameiro, M., Manolios, P.: Formally verifying an algorithm based on interval arithmetic for checking transversality. In: Fifth International Workshop on the ACL2 Theorem Prover and Its Applications (ACL2-2004), 2004
Nelson, E.: On-line books: internal set theory. Available on the world-wide web at http://www.math.princeton.edu/ñelson/books.html
Nelson, E.: Internal set theory: a new approach to nonstandard analysis. Bull. Am. Math. Soc. 83, 1165–1198 (1977)
Robert, A.: Non-Standard Analysis. Wiley, New York (1988)
Robinson, A.: Non-Standard Analysis. Princeton University Press, Princeton, New Jersey (1996)
Sawada, J., Gamboa, R.: Mechanical verification of a square root algorithm using Taylor’s theorem. In: Formal Methods in Computer-Aided Design (FMCAD’02), 2002
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gamboa, R., Cowles, J. Theory Extension in ACL2(r). J Autom Reasoning 38, 273–301 (2007). https://doi.org/10.1007/s10817-006-9043-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10817-006-9043-0