Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Genetic etiological spectrum of sperm morphological abnormalities

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Male infertility manifests in the form of a reduction in sperm count, sperm motility, or the loss of fertilizing ability. While the loss of sperm production can have mixed reasons, sperm structural defects, cumulatively known as teratozoospermia, have predominantly genetic bases. The aim of the present review is to undertake a comprehensive analysis of the genetic mutations leading to sperm morphological deformities/teratozoospermia.

Methods

We undertook literature review for genes involved in sperm morphological abnormalities. The genes were classified according to the type of sperm defects they cause and on the basis of the level of evidence determined by the number of human studies and the availability of a mouse knockout.

Results

Mutations in the SUN5, CEP112, BRDT, DNAH6, PMFBP1, TSGA10, and SPATA20 genes result in acephalic sperm; mutations in the DPY19L2, SPATA16, PICK1, CCNB3, CHPT1, PIWIL4, and TDRD9 genes cause globozoospermia; mutations in the AURKC gene cause macrozoospermia; mutations in the WDR12 gene cause tapered sperm head; mutations in the RNF220 and ADCY10 genes result in small sperm head; mutations in the AMZ2 gene lead to vacuolated head formation; mutations in the CC2D1B and KIAA1210 genes lead to pyriform head formation; mutations in the SEPT14, ZPBP1, FBXO43, ZCWPW1, KATNAL2, PNLDC1, and CCIN genes cause amorphous head; mutations in the SEPT12, RBMX, and ACTL7A genes cause deformed acrosome formation; mutations in the DNAH1, DNAH2, DNAH6, DNAH17, FSIP2, CFAP43, AK7, CHAP251, CFAP65, ARMC2 and several other genes result in multiple morphological abnormalities of sperm flagella (MMAF).

Conclusions

Altogether, mutations in 31 genes have been reported to cause head defects and mutations in 62 genes are known to cause sperm tail defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All representative data are provided within the manuscript.

Code availability

Not applicable.

References

  1. Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015;13:37.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zorrilla M, Yatsenko AN. The genetics of infertility: current status of the field. Curr Genet Med Rep. 2013;1:247–60.

    Article  Google Scholar 

  3. Krausz C, Riera-Escamilla A. Genetics of male infertility. Nat Rev Urol. 2018;15:369–84.

    Article  CAS  PubMed  Google Scholar 

  4. De Braekeleer M, Nguyen MH, Morel F, Perrin A. Genetic aspects of monomorphic teratozoospermia: a review. J Assist Reprod Genet. 2015;32:615–23.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Sperm. In: Molecular biology of the cell. 4th ed. New York: Garland Science; 2002.

  6. Zhao W, Li Z, Ping P, Wang G, Yuan X, Sun F. Outer dense fibers stabilize the axoneme to maintain sperm motility. J Cell Mol Med. 2018;22:1755–68.

    Article  CAS  PubMed  Google Scholar 

  7. Castillo J, de la Iglesia A, Leiva M, Jodar M, Oliva R. Proteomics of human spermatozoa. Hum Reprod. 2023;38:2312–20.

    Article  CAS  PubMed  Google Scholar 

  8. Goyal R, Kotru M, Gogia A, Sharma S. Qualitative defects with normal sperm counts in a patient attending infertility clinic. Indian J Pathol Microbiol. 2018;61:233.

    Article  PubMed  Google Scholar 

  9. Coutton C, Escoffier J, Martinez G, Arnoult C, Ray PF. Teratozoospermia: spotlight on the main genetic actors in the human. Hum Reprod Update. 2015;21:455–85.

    Article  CAS  PubMed  Google Scholar 

  10. Baker MA, Naumovski N, Hetherington L, Weinberg A, Velkov T, Aitken RJ. Head and flagella subcompartmental proteomic analysis of human spermatozoa. Proteomics. 2013;13:61–74.

    Article  CAS  PubMed  Google Scholar 

  11. Beurois J, Cazin C, Kherraf Z-E, Martinez G, Celse T, Touré A, Arnoult C, Ray PF, Coutton C. Genetics of teratozoospermia: back to the head. Best Pract Res Clin Endocrinol Metab. 2020;34:101473.

    Article  CAS  PubMed  Google Scholar 

  12. Faja F, Pallotti F, Cargnelutti F, Senofonte G, Carlini T, Lenzi A, Lombardo F, Paoli D. Molecular analysis of DPY19L2, PICK1 and SPATA16 in Italian unrelated globozoospermic men. Life. 2021;11:641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yassine S, Escoffier J, Martinez G, Coutton C, Karaouzène T, Zouari R, Ravanat J-L, Metzler-Guillemain C, Lee HC, Fissore R, Hennebicq S, Ray PF, et al. Dpy19l2-deficient globozoospermic sperm display altered genome packaging and DNA damage that compromises the initiation of embryo development. Mol Hum Reprod. 2015;21:169–85.

    Article  CAS  PubMed  Google Scholar 

  14. Pierre V, Martinez G, Coutton C, Delaroche J, Yassine S, Novella C, Pernet-Gallay K, Hennebicq S, Ray PF, Arnoult C. Absence of Dpy19l2, a new inner nuclear membrane protein, causes globozoospermia in mice by preventing the anchoring of the acrosome to the nucleus. Dev Camb Engl. 2012;139:2955–65.

    CAS  Google Scholar 

  15. Harbuz R, Zouari R, Pierre V, Ben Khelifa M, Kharouf M, Coutton C, Merdassi G, Abada F, Escoffier J, Nikas Y, Vialard F, Koscinski I, et al. A recurrent deletion of DPY19L2 causes infertility in man by blocking sperm head elongation and acrosome formation. Am J Hum Genet. 2011;88:351–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Coutton C, Zouari R, Abada F, Ben Khelifa M, Merdassi G, Triki C, Escalier D, Hesters L, Mitchell V, Levy R, Sermondade N, Boitrelle F, et al. MLPA and sequence analysis of DPY19L2 reveals point mutations causing globozoospermia. Hum Reprod. 2012;27:2549–58.

    Article  CAS  PubMed  Google Scholar 

  17. Koscinski I, ElInati E, Fossard C, Redin C, Muller J, Velez de la Calle J, Schmitt F, Ben Khelifa M, Ray P, Kilani Z, Barratt CLR, Viville S. DPY19L2 deletion as a major cause of globozoospermia. Am J Hum Genet. 2011;88:344–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu F, Gong F, Lin G, Lu G. DPY19L2 gene mutations are a major cause of globozoospermia: identification of three novel point mutations. Mol Hum Reprod. 2013;19:395–404.

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Wu R, Zhu X, Liu W, Ye Y, Lu Z, Li N. Identification of a novel deletion mutation in DPY19L2 from an infertile patient with globozoospermia: a case report. Mol Cytogenet. 2020;13:24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ounis L, Zoghmar A, Coutton C, Rouabah L, Hachemi M, Martinez D, Martinez G, Bellil I, Khelifi D, Arnoult C, Fauré J, Benbouhedja S, et al. Mutations of the aurora kinase C gene causing macrozoospermia are the most frequent genetic cause of male infertility in Algerian men. Asian J Androl. 2015;17:68.

    Article  CAS  PubMed  Google Scholar 

  21. Modarres P, Tanhaei S, Tavalaee M, Ghaedi K, Deemeh MR, Nasr-Esfahani MH. Assessment of DPY19L2 deletion in familial and non-familial individuals with globozoospermia and DPY19L2 genotyping. Int J Fertil Steril. 2016;10:196–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Noveski P, Madjunkova S, Maleva I, Sotiroska V, Petanovski Z, Plaseska-Karanfilska D. A homozygous deletion of the DPY19L2 gene is a cause of globozoospermia in men from the Republic of Macedonia. Balk J Med Genet. 2013;16:73–6.

    Article  CAS  Google Scholar 

  23. ElInati E, Kuentz P, Redin C, Jaber S, Vanden Meerschaut F, Makarian J, Koscinski I, Nasr-Esfahani MH, Demirol A, Gurgan T, Louanjli N, Iqbal N, et al. Globozoospermia is mainly due to DPY19L2 deletion via non-allelic homologous recombination involving two recombination hotspots. Hum Mol Genet. 2012;21:3695–702.

    Article  CAS  PubMed  Google Scholar 

  24. Ghédir H, Ibala-Romdhane S, Okutman O, Viot G, Saad A, Viville S. Identification of a new DPY19L2 mutation and a better definition of DPY19L2 deletion breakpoints leading to globozoospermia. Mol Hum Reprod. 2016;22:35–45.

    Article  PubMed  Google Scholar 

  25. Shang Y-L, Zhu F-X, Yan J, Chen L, Tang W-H, Xiao S, Mo W-K, Zhang Z-G, He X-J, Qiao J, Cao Y-X, Li W. Novel DPY19L2 variants in globozoospermic patients and the overcoming this male infertility. Asian J Androl. 2019;21:183.

    Article  PubMed  Google Scholar 

  26. Li Y, Wang Y, Wen Y, Zhang T, Wang X, Jiang C, Zheng R, Zhou F, Chen D, Yang Y, Shen Y. Whole-exome sequencing of a cohort of infertile men reveals novel causative genes in teratozoospermia that are chiefly related to sperm head defects. Hum Reprod. 2021;37:152–77.

    Article  CAS  PubMed  Google Scholar 

  27. Chianese C, Fino MG, Riera Escamilla A, López Rodrigo O, Vinci S, Guarducci E, Daguin F, Muratori M, Tamburrino L, Lo Giacco D, Ars E, Bassas L, et al. Comprehensive investigation in patients affected by sperm macrocephaly and globozoospermia. Andrology. 2015;3:203–12.

    Article  CAS  PubMed  Google Scholar 

  28. ElInati E, Fossard C, Okutman O, Ghédir H, Ibala-Romdhane S, Ray PF, Saad A, Hennebicq S, Viville S. A new mutation identified in SPATA16 in two globozoospermic patients. J Assist Reprod Genet. 2016;33:815–20.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fujihara Y, Oji A, Larasati T, Kojima-Kita K, Ikawa M. Human globozoospermia-related gene Spata16 is required for sperm formation revealed by CRISPR/Cas9-mediated mouse models. Int J Mol Sci. 2017;18:2208.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dam AHDM, Koscinski I, Kremer JAM, Moutou C, Jaeger A-S, Oudakker AR, Tournaye H, Charlet N, Lagier-Tourenne C, Van Bokhoven H, Viville S. Homozygous mutation in SPATA16 is associated with male infertility in human globozoospermia. Am J Hum Genet. 2007;81:813–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Karaca N, Yilmaz R, Kanten GE, Kervancioglu E, Solakoglu S, Kervancioglu ME. First successful pregnancy in a globozoospermic patient having homozygous mutation in SPATA16. Fertil Steril. 2014;102:103–7.

    Article  CAS  PubMed  Google Scholar 

  32. Liu G, Shi Q-W, Lu G-X. A newly discovered mutation in PICK1 in a human with globozoospermia. Asian J Androl. 2010;12:556–60.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Xiao N, Kam C, Shen C, Jin W, Wang J, Lee KM, Jiang L, Xia J. PICK1 deficiency causes male infertility in mice by disrupting acrosome formation. J Clin Invest. 2009;119:802–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Du Y-Q, Shu C-Y, Zheng M, Xu W, Sun Y, Shen L, Zhang C, Zhang Y-X, Wang Q-N, Li K-Q, Chen B-Y, Hao K, et al. Truncating PICK1 variant identified in azoospermia affected mitochondrial dysfunction in knockout mice. Curr Med Sci. 2023;43:313–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Refik-Rogers J, Manova K, Koff A. Misexpression of cyclin B3 leads to aberrant spermatogenesis. Cell Cycle. 2006;5:1966–73.

    Article  CAS  PubMed  Google Scholar 

  36. Nguyen TB, Manova K, Capodieci P, Lindon C, Bottega S, Wang X-Y, Refik-Rogers J, Pines J, Wolgemuth DJ, Koff A. Characterization and expression of mammalian cyclin B3, a prepachytene meiotic cyclin. J Biol Chem. 2002;277:41960–9.

    Article  CAS  PubMed  Google Scholar 

  37. Karasu ME, Keeney S. Cyclin B3 is dispensable for mouse spermatogenesis. Chromosoma. 2019;128:473–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zheng K, Wang PJ. Blockade of pachytene piRNA biogenesis reveals a novel requirement for maintaining post-meiotic germline genome integrity. PLOS Genet. 2012;8:e1003038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Carmell MA, Girard A, van de Kant HJG, Bourc’his D, Bestor TH, de Rooij DG, Hannon GJ. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell. 2007;12:503–14.

    Article  CAS  PubMed  Google Scholar 

  40. Bao J, Zhang Y, Schuster AS, Ortogero N, Nilsson EE, Skinner MK, Yan W. Conditional inactivation of Miwi2 reveals that MIWI2 is only essential for prospermatogonial development in mice. Cell Death Differ. 2014;21:783–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shoji M, Tanaka T, Hosokawa M, Reuter M, Stark A, Kato Y, Kondoh G, Okawa K, Chujo T, Suzuki T, Hata K, Martin SL, et al. The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline. Dev Cell. 2009;17:775–87.

    Article  CAS  PubMed  Google Scholar 

  42. Arafat M, Har-Vardi I, Harlev A, Levitas E, Zeadna A, Abofoul-Azab M, Dyomin V, Sheffield VC, Lunenfeld E, Huleihel M, Parvari R. Mutation in TDRD9 causes non-obstructive azoospermia in infertile men. J Med Genet. 2017;54:633–9.

    Article  CAS  PubMed  Google Scholar 

  43. Wenda JM, Homolka D, Yang Z, Spinelli P, Sachidanandam R, Pandey RR, Pillai RS. Distinct roles of RNA helicases MVH and TDRD9 in PIWI slicing-triggered mammalian piRNA Biogenesis and function. Dev Cell. 2017;41:623-637.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hua J, Wan Y. Whole-exome sequencing identified a novel mutation of AURKC in a Chinese family with macrozoospermia. J Assist Reprod Genet. 2019;36:529–34.

    Article  PubMed  Google Scholar 

  45. Ghédir H, Gribaa M, Mamaî O, Ben Charfeddine I, Braham A, Amara A, Mehdi M, Saad A, Ibala-Romdhane S. Macrozoospermia: screening for the homozygous c.144delC mutation in AURKC gene in infertile men and estimation of its heterozygosity frequency in the Tunisian population. J Assist Reprod Genet. 2015;32:1651–8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dieterich K, Soto Rifo R, Faure AK, Hennebicq S, Ben Amar B, Zahi M, Perrin J, Martinez D, Sèle B, Jouk P-S, Ohlmann T, Rousseaux S, et al. Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and causes male infertility. Nat Genet. 2007;39:661–5.

    Article  CAS  PubMed  Google Scholar 

  47. Dieterich K, Zouari R, Harbuz R, Vialard F, Martinez D, Bellayou H, Prisant N, Zoghmar A, Guichaoua MR, Koscinski I, Kharouf M, Noruzinia M, et al. The Aurora Kinase C c.144delC mutation causes meiosis I arrest in men and is frequent in the North African population. Hum Mol Genet. 2009;18:1301–9.

    Article  CAS  PubMed  Google Scholar 

  48. Harbuz R, Zouari R, Dieterich K, Nikas Y, Lunardi J, Hennebicq S, Ray P-F. Rôle d’aurora kinase C (AURKC) dans la reproduction humaine. Gynécologie Obstétrique Fertil. 2009;37:546–51.

    Article  CAS  Google Scholar 

  49. Ben Khelifa M, Coutton C, Blum MGB, Abada F, Harbuz R, Zouari R, Guichet A, May-Panloup P, Mitchell V, Rollet J, Triki C, Merdassi G, et al. Identification of a new recurrent Aurora kinase C mutation in both European and African men with macrozoospermia. Hum Reprod. 2012;27:3337–46.

    Article  CAS  PubMed  Google Scholar 

  50. El Kerch F, Lamzouri A, Laarabi FZ, Zahi M, Ben Amar B, Sefiani A. Confirmation de la forte prévalence au Maroc de la mutation homozygote c.144delC du gène aurora kinase C (AURKC) dans les tératozoospermies avec spermatozoïdes macrocéphales. J Gynécologie Obstétrique Biol Reprod. 2011;40:329–33.

    Article  Google Scholar 

  51. Eloualid A, Rouba H, Rhaissi H, Barakat A, Louanjli N, Bashamboo A, McElreavey K. Prevalence of the Aurora kinase C c.144delC mutation in infertile Moroccan men. Fertil Steril. 2014;101:1086–90.

    Article  CAS  PubMed  Google Scholar 

  52. Abbassi M, Sayel H, El Mouhi H, Jelte M, Ahakoud M. A case of severe teratozoospermia and infertility due to homozygous mutation c.144delC in the AURKC Gene. Cureus. 2023;15:e43376.

    PubMed  PubMed Central  Google Scholar 

  53. Fellmeth JE, Ghanaim EM, Schindler K. Characterization of macrozoospermia-associated AURKC mutations in a mammalian meiotic system. Hum Mol Genet. 2016;25:2698–711.

    CAS  PubMed  Google Scholar 

  54. Kobesiy MM, Foda BM, Ali OSM, Fahmy I, Ismail SM. Mutational analysis of Aurora kinase C gene in Egyptian patients with macrozoospermia. Andrologia. 2020;52:e13619.

    Article  CAS  PubMed  Google Scholar 

  55. Ben Khelifa M, Zouari R, Harbuz R, Halouani L, Arnoult C, Lunardi J, Ray PF. A new AURKC mutation causing macrozoospermia: implications for human spermatogenesis and clinical diagnosis. Mol Hum Reprod. 2011;17:762–8.

    Article  CAS  PubMed  Google Scholar 

  56. Hamza L, Gaitch N, Sallem A, Boucekkine N, Girodon E, Oumeziane A, Attal N, Wolf JP, Bienvenu T. Two frequent loss-of-function mutations in Aurora Kinase C gene in Algerian infertile men with macrozoospermia. Andrologia. 2020;52:e13868.

    Article  CAS  PubMed  Google Scholar 

  57. Bai S, Hu X, Zhao Y, Li W, Wan Y, Jin R, Wang Y, Guo T, Tong X, Xu B. Compound heterozygosity for novel AURKC mutations in an infertile man with macrozoospermia. Andrologia. 2020;52:e13663.

    Article  CAS  PubMed  Google Scholar 

  58. Ortega V, Oyanedel J, Fleck-Lavergne D, Horta F, Mercado-Campero A, Palma-Ceppi C. Macrozoospermia associated with mutations of AURKC gene: first case report in Latin America and literature review. Rev Int Androl. 2020;18:159–63.

    PubMed  Google Scholar 

  59. Kimmins S, Crosio C, Kotaja N, Hirayama J, Monaco L, Höög C, van Duin M, Gossen JA, Sassone-Corsi P. Differential functions of the Aurora-B and Aurora-C kinases in mammalian spermatogenesis. Mol Endocrinol Baltim Md. 2007;21:726–39.

    Article  CAS  Google Scholar 

  60. Li L, Sha Y, Wang X, Li P, Wang J, Kee K, Wang B. Whole-exome sequencing identified a homozygous BRDT mutation in a patient with acephalic spermatozoa. Oncotarget. 2017;8:19914–22.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Shang E, Nickerson HD, Wen D, Wang X, Wolgemuth DJ. The first bromodomain of Brdt, a testis-specific member of the BET sub-family of double-bromodomain-containing proteins, is essential for male germ cell differentiation. Development. 2007;134:3507–15.

    Article  CAS  PubMed  Google Scholar 

  62. Sha Y, Wang X, Yuan J, Zhu X, Su Z, Zhang X, Xu X, Wei X. Loss-of-function mutations in centrosomal protein 112 is associated with human acephalic spermatozoa phenotype. Clin Genet. 2020;97:321–8.

    Article  CAS  PubMed  Google Scholar 

  63. Li L, Sha Y-W, Xu X, Mei L-B, Qiu P-P, Ji Z-Y, Lin S-B, Su Z-Y, Wang C, Yin C, Li P. DNAH6 is a novel candidate gene associated with sperm head anomaly. Andrologia. 2018;50:e12953.

    Article  Google Scholar 

  64. Deng T-Q, Xie Y-L, Pu J-B, Xuan J, Li X-M. Compound heterozygous mutations in PMFBP1 cause acephalic spermatozoa syndrome: a case report. World J Clin Cases. 2022;10:12761–7.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Liu G, Wang N, Zhang H, Yin S, Dai H, Lin G, Li W. Novel mutations in PMFBP1, TSGA10 and SUN5: expanding the spectrum of mutations that may cause acephalic spermatozoa. Clin Genet. 2020;97:938–9.

    Article  CAS  PubMed  Google Scholar 

  66. Liu G, Xing X, Zhang H, Zhu W, Lin G, Lu G, Li W. Patients with acephalic spermatozoa syndrome linked to novel TSGA10/PMFBP1 variants have favorable pregnancy outcomes from intracytoplasmic sperm injection. Clin Genet. 2021;100:334–9.

    Article  CAS  PubMed  Google Scholar 

  67. Lu M, Kong S, Xiang M, Wang Y, Zhang J, Duan Z, Zha X, Wang F, Cao Y, Zhu F. A novel homozygous missense mutation of PMFBP1 causes acephalic spermatozoa syndrome. J Assist Reprod Genet. 2021;38:949–55.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Nie H, Tang Y, Zhang X, Tan Y, Qin W. Novel mutations of PMFBP1 in a man with acephalic spermatozoa defects. Mol Genet Genomic Med. 2022;10:e2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhu F, Liu C, Wang F, Yang X, Zhang J, Wu H, Zhang Z, He X, Zhang Z, Zhou P, Wei Z, Shang Y, et al. Mutations in PMFBP1 cause acephalic spermatozoa syndrome. Am J Hum Genet. 2018;103:188–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sha Y, Wang X, Xu X, Ding L, Liu W, Li P, Su Z, Chen J, Mei L, Zheng L, Wang H, Kong S, et al. Biallelic mutations in PMFBP1 cause acephalic spermatozoa. Clin Genet. 2019;95:277–86.

    Article  CAS  PubMed  Google Scholar 

  71. Xu W, Yao Z, Li Y, Wang K, Kong S, Wang Y, Xiang M, Zhu F, Wang F, Zhang H. Loss of PMFBP1 disturbs mouse spermatogenesis by downregulating HDAC3 expression. J Assist Reprod Genet. 2023;40:1865–79.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wang X, Jiang C, Dai S, Shen G, Yang Y, Shen Y. Identification of nonfunctional SPATA20 causing acephalic spermatozoa syndrome in humans. Clin Genet. 2023;103:310–9.

    Article  CAS  PubMed  Google Scholar 

  73. Martinez G, Metzler-Guillemain C, Cazin C, Kherraf Z-E, Paulmyer-Lacroix O, Arnoult C, Ray PF, Coutton C. Expanding the sperm phenotype caused by mutations in SPATA20: a novel splicing mutation in an infertile patient with partial globozoospermia. Clin Genet. 2023;103:612–4.

    Article  CAS  PubMed  Google Scholar 

  74. Elkhatib RA, Paci M, Longepied G, Saias-Magnan J, Courbière B, Guichaoua M-R, Lévy N, Metzler-Guillemain C, Mitchell MJ. Homozygous deletion of SUN5 in three men with decapitated spermatozoa. Hum Mol Genet. 2017;26(16):3167–71.

    CAS  PubMed  Google Scholar 

  75. Zhu F, Wang F, Yang X, Zhang J, Wu H, Zhang Z, Zhang Z, He X, Zhou P, Wei Z, Gecz J, Cao Y. Biallelic SUN5 mutations cause autosomal-recessive acephalic spermatozoa syndrome. Am J Hum Genet. 2016;99:942–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fang J, Zhang J, Zhu F, Yang X, Cui Y, Liu J. Patients with acephalic spermatozoa syndrome linked to SUN5 mutations have a favorable pregnancy outcome from ICSI. Hum Reprod. 2018;33:372–7.

    Article  CAS  PubMed  Google Scholar 

  77. Shang Y, Yan J, Tang W, Liu C, Xiao S, Guo Y, Yuan L, Chen L, Jiang H, Guo X, Qiao J, Li W. Mechanistic insights into acephalic spermatozoa syndrome–associated mutations in the human SUN5 gene. J Biol Chem. 2018;293:2395–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cazin C, Boumerdassi Y, Martinez G, Fourati Ben Mustapha S, Whitfield M, Coutton C, Thierry-Mieg N, Di Pizio P, Rives N, Arnoult C, Touré A, Ray PF, et al. Identification and characterization of the most common genetic variant responsible for acephalic spermatozoa syndrome in men originating from North Africa. Int J Mol Sci. 2021;22:2187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Feng K, Ni JJ, Xia YQ, Qu XW, Zhang HJ, Wan F, Hong K, Zhang CL. Guo HB [Genetic analysis of three cases of acephalic spermatozoa syndrome caused by SUN5 mutation and the outcome of assisted reproductive technology]. Beijing Da Xue Xue Bao. 2021;53:803–7.

    CAS  PubMed  Google Scholar 

  80. Sha Y-W, Xu X, Ji Z-Y, Lin S-B, Wang X, Qiu P-P, Zhou Y, Mei L-B, Su Z-Y, Li L, Li P. Genetic contribution of SUN5 mutations to acephalic spermatozoa in Fujian China. Gene. 2018;647:221–5.

    Article  CAS  PubMed  Google Scholar 

  81. Zhang D, Huang W-J, Chen G-Y, Dong L-H, Tang Y, Zhang H, Li Q-Q, Mei X-Y, Wang Z-H, Lan F-H. Pathogenesis of acephalic spermatozoa syndrome caused by SUN5 variant. Mol Hum Reprod. 2021;27:gaab028.

    Article  PubMed  Google Scholar 

  82. Xiang M, Wang Y, Wang K, Kong S, Lu M, Zhang J, Duan Z, Zha X, Shi X, Wang F, Cao Y, Zhu F. Novel mutation and deletion in SUN5 cause male infertility with acephalic spermatozoa syndrome. Reprod Sci. 2022;29:646–51.

    Article  CAS  PubMed  Google Scholar 

  83. Zhang Y, Yang L, Huang L, Liu G, Nie X, Zhang X, Xing X. SUN5 interacting with Nesprin3 plays an essential role in sperm head-to-tail linkage: research on Sun5 gene knockout mice. Front Cell Dev Biol. 2021;9:684826.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sha Y-W, Sha Y-K, Ji Z-Y, Mei L-B, Ding L, Zhang Q, Qiu P-P, Lin S-B, Wang X, Li P, Xu X, Li L. TSGA10 is a novel candidate gene associated with acephalic spermatozoa. Clin Genet. 2018;93:776–83.

    Article  CAS  PubMed  Google Scholar 

  85. Ye Y, Wei X, Sha Y, Li N, Yan X, Cheng L, Qiao D, Zhou W, Wu R, Liu Q, Li Y. Loss-of-function mutation in TSGA10 causes acephalic spermatozoa phenotype in human. Mol Genet Genomic Med. 2020;8:e1284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Khan K, Zhang X, Dil S, Khan I, Unar A, Ye J, Zeb A, Zubair M, Shah W, Zhang H, Khan MA, Wu L, et al. A novel homozygous TSGA10 missense variant causes acephalic spermatozoa syndrome in a Pakistani family. Basic Clin Androl. 2024;34:4.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Xiang M, Wang Y, Xu W, Zheng N, Zhang J, Duan Z, Zha X, Shi X, Wang F, Cao Y, Zhu F. Pathogenesis of acephalic spermatozoa syndrome caused by splicing mutation and de novo deletion in TSGA10. J Assist Reprod Genet. 2021;38:2791–9.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Luo G, Hou M, Wang B, Liu Z, Liu W, Han T, Zhang D, Zhou X, Jia W, Tan Y, Wu Y, Wang J, et al. Tsga10 is essential for arrangement of mitochondrial sheath and male fertility in mice. Andrology. 2021;9:368–75.

    Article  CAS  PubMed  Google Scholar 

  89. Ventimiglia LN, Cuesta-Geijo MA, Martinelli N, Caballe A, Macheboeuf P, Miguet N, Parnham IM, Olmos Y, Carlton JG, Weissenhorn W, Martin-Serrano J. CC2D1B coordinates ESCRT-III activity during the mitotic reformation of the nuclear envelope. Dev Cell. 2018;47:547-563.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Iwamori T, Iwamori N, Matsumoto M, Ono E, Matzuk MM. Identification of KIAA1210 as a novel X-chromosome-linked protein that localizes to the acrosome and associates with the ectoplasmic specialization in testes. Biol Reprod. 2017;96:469–77.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gandini L, Lombardo F, Paoli D, Caponecchia L, Familiari G, Verlengia C, Dondero F, Lenzi A. Study of apoptotic DNA fragmentation in human spermatozoa. Hum Reprod. 2000;15:830–9.

    Article  CAS  PubMed  Google Scholar 

  92. Buck J, Sinclair ML, Schapal L, Cann MJ, Levin LR. Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proc Natl Acad Sci. 1999;96:79–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Reed BY, Gitomer WL, Heller HJ, Hsu MC, Lemke M, Padalino P, Pak CYC. Identification and characterization of a gene with base substitutions associated with the absorptive hypercalciuria phenotype and low spinal bone density. J Clin Endocrinol Metab. 2002;87(4):1476–85.

    Article  CAS  PubMed  Google Scholar 

  94. Jiang X, Wang X, Zhang X, Xiao Z, Zhang C, Liu X, Xu J, Li D, Shen Y. A homozygous RNF220 mutation leads to male infertility with small-headed sperm. Gene. 2019;688:13–8.

    Article  CAS  PubMed  Google Scholar 

  95. Dai J, Chen Y, Li Q, Zhang T, Zhou Q, Gong F, Lu G, Zheng W, Lin G. Pathogenic variant in ACTL7A causes severe teratozoospermia characterized by bubble-shaped acrosomes and male infertility. Mol Hum Reprod. 2022;28:gaac028.

    Article  PubMed  Google Scholar 

  96. Zhou X, Xi Q, Jia W, Li Z, Liu Z, Luo G, Xing C, Zhang D, Hou M, Liu H, Yang X, Luo Y, et al. A novel homozygous mutation in ACTL7A leads to male infertility. Mol Genet Genomics MGG. 2023;298:353–60.

    Article  CAS  PubMed  Google Scholar 

  97. Wang M, Zhou J, Long R, Jin H, Gao L, Zhu L, Jin L. Novel ACTL7A variants in males lead to fertilization failure and male infertility. Andrology. 2023. https://doi.org/10.1111/andr.13553.

  98. Zhang Y, Tang J, Wang X, Sun Y, Yang T, Shen X, Yang X, Shi H, Sun X, Xin A. Loss of ACTL7A causes small head sperm by defective acrosome-acroplaxome-manchette complex. Reprod Biol Endocrinol. 2023;21:82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu L, Yang J, Zhang W-J, Zhou Y-L, Zhao G-J, Huang Y, Tang S-Y. The identification of AMZ2 as a candidate causative gene in a severe teratozoospermia patient characterized by vacuolated spermatozoa. Asian J Androl. 2023;26:107–11.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Yan W. Calicin is a key sperm head-shaping factor essential for male fertility. Sci Bull. 2022;67:2395–7.

    Article  CAS  Google Scholar 

  101. Fan Y, Huang C, Chen J, Chen Y, Wang Y, Yan Z, Yu W, Wu H, Yang Y, Nie L, Huang S, Wang F, et al. Mutations in CCIN cause teratozoospermia and male infertility. Sci Bull. 2022;67:2112–23.

    Article  CAS  Google Scholar 

  102. Zhang X-Z, Wei L-L, Jin H-J, Zhang X-H, Chen S-R. The perinuclear theca protein Calicin helps shape the sperm head and maintain the nuclear structure in mice. Cell Rep. 2022;40:111049.

    Article  CAS  PubMed  Google Scholar 

  103. Ma Y, Xie N, Xie D, Sun L, Li S, Li P, Li Y, Li J, Dong Z, Xie X. A novel homozygous FBXO43 mutation associated with male infertility and teratozoospermia in a consanguineous Chinese family. Fertil Steril. 2019;111:909-917.e1.

    Article  PubMed  Google Scholar 

  104. Gopinathan L, Szmyd R, Low D, Diril MK, Chang H-Y, Coppola V, Liu K, Tessarollo L, Guccione E, van Pelt AMM, Kaldis P. Emi2 is essential for mouse spermatogenesis. Cell Rep. 2017;20:697–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wei X, Liu W, Zhu X, Li Y, Zhang X, Chen J, Isachenko V, Sha Y, Lu Z. Biallelic mutations in KATNAL2 cause male infertility due to oligo-astheno-teratozoospermia. Clin Genet. 2021;100:376–85.

    Article  CAS  PubMed  Google Scholar 

  106. Dunleavy JEM, Okuda H, O’Connor AE, Merriner DJ, O’Donnell L, Jamsai D, Bergmann M, O’Bryan MK. Katanin-like 2 (KATNAL2) functions in multiple aspects of haploid male germ cell development in the mouse. PLOS Genet. 2017;13:e1007078.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ding D, Liu J, Dong K, Midic U, Hess RA, Xie H, Demireva EY, Chen C. PNLDC1 is essential for piRNA 3’ end trimming and transposon silencing during spermatogenesis in mice. Nat Commun. 2017;8:819.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zhao S-Y, Meng L-L, Du Z-L, Tan Y-Q, He W-B, Wang X. A novel loss-of-function variant in PNLDC1 inducing oligo-astheno-teratozoospermia and male infertility. Asian J Androl. 2023;25:643–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Elliott DJ. The role of potential splicing factors including RBMY, RBMX, hnRNPG-T and STAR proteins in spermatogenesis*. Int J Androl. 2004;27:328–34.

    Article  CAS  PubMed  Google Scholar 

  110. Kuo Y-C, Lin Y-H, Chen H-I, Wang Y-Y, Chiou Y-W, Lin H-H, Pan H-A, Wu C-M, Su S-M, Hsu C-C, Kuo P-L. SEPT12 mutations cause male infertility with defective sperm annulus. Hum Mutat. 2012;33:710–9.

    Article  CAS  PubMed  Google Scholar 

  111. Lin Y-H, Chou C-K, Hung Y-C, Yu I-S, Pan H-A, Lin S-W, Kuo P-L. SEPT12 deficiency causes sperm nucleus damage and developmental arrest of preimplantation embryos. Fertil Steril. 2011;95:363–5.

    Article  CAS  PubMed  Google Scholar 

  112. Yeh C-H, Wang Y-Y, Wee S-K, Chen M-F, Chiang H-S, Kuo P-L, Lin Y-H. Testis-Specific SEPT12 expression affects SUN protein localization and is involved in mammalian spermiogenesis. Int J Mol Sci. 2019;20:1163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chen H, Li P, Du X, Zhao Y, Wang L, Tian Y, Song X, Shuai L, Bai X, Chen L. Homozygous loss of Septin12, but not its haploinsufficiency, leads to male infertility and fertilization failure. Front Cell Dev Biol. 2022;10:850052.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Peterson EA, Kalikin LM, Steels JD, Estey MP, Trimble WS, Petty EM. Characterization of a SEPT9 interacting protein, SEPT14, a novel testis-specific septin. Mamm Genome. 2007;18:796–807.

    Article  CAS  PubMed  Google Scholar 

  115. Wang Y-Y, Lai T-H, Chen M-F, Lee H-L, Kuo P-L, Lin Y-H. SEPT14 mutations and teratozoospermia: genetic effects on sperm head morphology and DNA integrity. J Clin Med. 2019;8:1297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lin Y-H, Huang C-Y, Ke C-C, Wang Y-Y, Lai T-H, Liu H-C, Ku W-C, Chan C-C, Lin Y-H. ACTN4 mediates SEPT14 mutation-induced sperm head defects. Biomedicines. 2020;8:518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chen K-R, Wang H-Y, Liao Y-H, Sun L-H, Huang Y-H, Yu L, Kuo P-L. Effects of Septin-14 gene deletion on adult cognitive/emotional behavior. Front Mol Neurosci. 2022;15:880858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Li M, Huang T, Li M-J, Zhang C-X, Yu X-C, Yin Y-Y, Liu C, Wang X, Feng H-W, Zhang T, Liu M-F, Han C-S, et al. The histone modification reader ZCWPW1 is required for meiosis prophase I in male but not in female mice. Sci Adv. 2019;5:eaax1101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Song Y, Guo J, Zhou Y, Wei X, Li J, Zhang G, Wang H. A loss-of-function variant in ZCWPW1 causes human male infertility with sperm head defect and high DNA fragmentation. Reprod Health. 2024;21:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yatsenko AN, O’Neil DS, Roy A, Arias-Mendoza PA, Chen R, Murthy LJ, Lamb DJ, Matzuk MM. Association of mutations in the zona pellucida binding protein 1 (ZPBP1) gene with abnormal sperm head morphology in infertile men. Mol Hum Reprod. 2012;18:14–21.

    Article  CAS  PubMed  Google Scholar 

  121. Lin Y-N, Roy A, Yan W, Burns KH, Matzuk MM. Loss of zona pellucida binding proteins in the acrosomal matrix disrupts acrosome biogenesis and sperm morphogenesis. Mol Cell Biol. 2007;27:6794–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hua J, Guo L, Yao Y, Hu W, Wan Y-Y, Xu B. Biallelic mutations in WDR12 are associated with male infertility with tapered-head sperm. Asian J Androl. 2022;25:398–403.

    Article  PubMed Central  Google Scholar 

  123. Leung MR, Zeng J, Wang X, Roelofs MC, Huang W, Chiozzi RZ, Hevler JF, Heck AJR, Dutcher SK, Brown A, Zhang R, Zeev-Ben-Mordehai T. Structural specializations of the sperm tail. Cell. 2023;186:2880-2896.e17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nsota Mbango J-F, Coutton C, Arnoult C, Ray PF, Touré A. Genetic causes of male infertility: snapshot on morphological abnormalities of the sperm flagellum. Basic Clin Androl. 2019;29:2.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Lorès P, Coutton C, Khouri EE, Stouvenel L, Givelet M, Thomas L, Rode B, Schmitt A, Louis B, Sakheli Z, Chaudhry M, Fernandez-Gonzales A, et al. Homozygous missense mutation L673P in adenylate kinase 7 (AK7) leads to primary male infertility and multiple morphological anomalies of the flagella but not to primary ciliary dyskinesia. Hum Mol Genet. 2018;27(7):1196–211.

    Article  PubMed  Google Scholar 

  126. Wang W-L, Tu C-F, Tan Y-Q. Insight on multiple morphological abnormalities of sperm flagella in male infertility: what is new? Asian J Androl. 2020;22:236.

    Article  PubMed  Google Scholar 

  127. Xiang M, Wang Y, Xu W, Zheng N, Deng H, Zhang J, Duan Z, Zha X, Zhang W, Song G, Shi X, Wang F, et al. A novel homozygous missense mutation in AK7 causes multiple morphological anomalies of the flagella and oligoasthenoteratozoospermia. J Assist Reprod Genet. 2022;39:261–6.

    Article  PubMed  Google Scholar 

  128. Chang T, Tang H, Zhou X, He J, Liu N, Li Y, Xiang W, Yao Z. A novel homozygous nonsense variant of AK7 is associated with multiple morphological abnormalities of the sperm flagella (MMAF). Reprod Biomed Online. 2024;48(5):103765.

    Article  CAS  PubMed  Google Scholar 

  129. Poursafari Talemi E, Hosseini S-H, Gourabi H, Sabbaghian M, Mohseni MA. Evaluation of the 1499T>C variant in the AKAP3 gene of infertile men with multiple morphological abnormalities of the sperm flagella phenotype: a case-control study. Int J Fertil Steril. 2024;18:180–4.

    PubMed  PubMed Central  Google Scholar 

  130. Liu C, Shen Y, Tang S, Wang J, Zhou Y, Tian S, Wu H, Cong J, He X, Jin L, Cao Y, Yang Y, et al. Homozygous variants in AKAP3 induce asthenoteratozoospermia and male infertility. J Med Genet. 2023;60:137–43.

    Article  CAS  PubMed  Google Scholar 

  131. Xu K, Yang L, Zhang L, Qi H. Lack of AKAP3 disrupts integrity of the subcellular structure and proteome of mouse sperm and causes male sterility. Dev Camb Engl. 2020;147:dev181057.

    CAS  Google Scholar 

  132. Zhang G, Li D, Tu C, Meng L, Tan Y, Ji Z, Cheng J, Lu G, Lin G, Zhang H, Sun J, Wang M, et al. Loss-of-function missense variant of AKAP4 induced male infertility through reduced interaction with QRICH2 during sperm flagella development. Hum Mol Genet. 2021;31:219–31.

    Article  PubMed  Google Scholar 

  133. Wei H, Zhang X, Wang C, Wang J, Li T, Chen S, Li H, Wang B. A pathogenic AKAP4 variant, p.R429H, causes male in/subfertility in humans and mice. Clin Transl Med. 2023;13:e1463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gu L, Liu X, Yang J, Bai J. A new hemizygous missense mutation, c.454T>C (p.S152P), in AKAP4 gene is associated with asthenozoospermia. Mol Reprod Dev. 2021;88:587–97.

    Article  CAS  PubMed  Google Scholar 

  135. Miki K, Willis WD, Brown PR, Goulding EH, Fulcher KD, Eddy EM. Targeted disruption of the Akap4 Gene causes defects in sperm flagellum and motility. Dev Biol. 2002;248:331–42.

    Article  CAS  PubMed  Google Scholar 

  136. Fang X, Huang L-L, Xu J, Ma C-Q, Chen Z-H, Zhang Z, Liao C-H, Zheng S-X, Huang P, Xu W-M, Li N, Sun L. Proteomics and single-cell RNA analysis of Akap4-knockout mice model confirm indispensable role of Akap4 in spermatogenesis. Dev Biol. 2019;454:118–27.

    Article  CAS  PubMed  Google Scholar 

  137. Coutton C, Martinez G, Kherraf Z-E, Amiri-Yekta A, Boguenet M, Saut A, He X, Zhang F, Cristou-Kent M, Escoffier J, Bidart M, Satre V, et al. Bi-allelic mutations in ARMC2 lead to severe astheno-teratozoospermia due to sperm flagellum malformations in humans and mice. Am J Hum Genet. 2019;104:331–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Khan I, Dil S, Zhang H, Zhang B, Khan T, Zeb A, Zhou J, Nawaz S, Zubair M, Khan K, Ma H, Shi Q. A novel stop-gain mutation in ARMC2 is associated with multiple morphological abnormalities of the sperm flagella. Reprod Biomed Online. 2021;43:913–9.

    Article  CAS  PubMed  Google Scholar 

  139. Wang J, Liu X, Zhang C, Xu Y, Wang W, Li H, Yang S, Zhao J. Patient with multiple morphological abnormalities of sperm flagella caused by a novel ARMC2 mutation has a favorable pregnancy outcome from intracytoplasmic sperm injection. J Assist Reprod Genet. 2022;39:1673–81.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Zhao S, Liu Q, Su L, Meng L, Tan C, Wei C, Zhang H, Luo T, Zhang Q, Tan Y-Q, Tu C, Chen H, et al. Identification of novel homozygous asthenoteratospermia-causing ARMC2 mutations associated with multiple morphological abnormalities of the sperm flagella. J Assist Reprod Genet. 2024;41:1297–306.

    Article  PubMed  Google Scholar 

  141. Tang S, Wang X, Li W, Yang X, Li Z, Liu W, Li C, Zhu Z, Wang L, Wang J, Zhang L, Sun X, et al. Biallelic mutations in CFAP43 and CFAP44 cause male infertility with multiple morphological abnormalities of the sperm flagella. Am J Hum Genet. 2017;100:854–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wu H, Li W, He X, Liu C, Fang Y, Zhu F, Jiang H, Liu W, Song B, Wang X, Zhou P, Wei Z, et al. NovelCFAP43 andCFAP44 mutations cause male infertility with multiple morphological abnormalities of the sperm flagella (MMAF). Reprod Biomed Online. 2019;38:769–78.

    Article  CAS  PubMed  Google Scholar 

  143. Coutton C, Vargas AS, Amiri-Yekta A, Kherraf Z-E, Ben Mustapha SF, Le Tanno P, Wambergue-Legrand C, Karaouzène T, Martinez G, Crouzy S, Daneshipour A, Hosseini SH, et al. Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human. Nat Commun. 2018;9:686.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Khan I, Shah B, Dil S, Ullah N, Zhou J-T, Zhao D-R, Zhang Y-W, Jiang X-H, Khan R, Khan A, Ali H, Zubair M, et al. Novel biallelic loss-of-function mutations in CFAP43 cause multiple morphological abnormalities of the sperm flagellum in Pakistani families. Asian J Androl. 2021;23:627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sha Y-W, Wang X, Xu X, Su Z-Y, Cui Y, Mei L-B, Huang X-J, Chen J, He X-M, Ji Z-Y, Bao H, Yang X, et al. Novel mutations in CFAP44 and CFAP43 cause multiple morphological abnormalities of the sperm flagella (MMAF). Reprod Sci. 2019;26:26–34.

    Article  CAS  PubMed  Google Scholar 

  146. Oud MS, Houston BJ, Volozonoka L, Mastrorosa FK, Holt GS, Alobaidi BKS, deVries PF, Astuti G, Ramos L, Mclachlan RI, O’Bryan MK, Veltman JA, et al. Exome sequencing reveals variants in known and novel candidate genes for severe sperm motility disorders. Hum Reprod. 2021;36:2597–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Martinez G, Coutton C, Loeuillet C, Cazin C, Muroňová J, Boguenet M, Lambert E, Dhellemmes M, Chevalier G, Hograindleur J-P, Vilpreux C, Neirijnck Y, et al. Oligogenic heterozygous inheritance of sperm abnormalities in mouse. eLife. 2022;11:e75373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Liu C, Tu C, Wang L, Wu H, Houston BJ, Mastrorosa FK, Zhang W, Shen Y, Wang J, Tian S, Meng L, Cong J, et al. Deleterious variants in X-linked CFAP47 induce asthenoteratozoospermia and primary male infertility. Am J Hum Genet. 2021;108:309–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Liao H-Q, Guo Z-Y, Huang L-H, Liu G, Lu J-F, Zhang Y-F, Xing X-W. WDR87 interacts with CFAP47 protein in the middle piece of spermatozoa flagella to participate in sperm tail assembly. Mol Hum Reprod. 2022;29:gaac042.

    Article  PubMed  Google Scholar 

  150. Liu M, Dai S, Zhang J, Yang Y, Shen Y, Liu H, Yang Y, Jiang C, Tian E. A novel mutation in CFAP47 causes male infertility due to multiple morphological abnormalities of the sperm flagella. Front Endocrinol. 2023;14:1155639.

    Article  Google Scholar 

  151. He X, Liu C, Yang X, Lv M, Ni X, Li Q, Cheng H, Liu W, Tian S, Wu H, Gao Y, Yang C, et al. Bi-allelic loss-of-function variants in CFAP58 cause flagellar axoneme and mitochondrial sheath defects and asthenoteratozoospermia in humans and mice. Am J Hum Genet. 2020;107:514–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sha Y, Sha Y, Liu W, Zhu X, Weng M, Zhang X, Wang Y, Zhou H. Biallelic mutations of CFAP58 are associated with multiple morphological abnormalities of the sperm flagella. Clin Genet. 2021;99:443–8.

    Article  CAS  PubMed  Google Scholar 

  153. Wang W, Tian S, Nie H, Tu C, Liu C, Li Y, Li D, Yang X, Meng L, Hu T, Zhang Q, Du J, et al. CFAP65 is required in the acrosome biogenesis and mitochondrial sheath assembly during spermiogenesis. Hum Mol Genet. 2021;30:2240–54.

    Article  CAS  PubMed  Google Scholar 

  154. Wang W, Tu C, Nie H, Meng L, Li Y, Yuan S, Zhang Q, Du J, Wang J, Gong F, Fan L, Lu G-X, et al. Biallelic mutations in CFAP65 lead to severe asthenoteratospermia due to acrosome hypoplasia and flagellum malformations. J Med Genet. 2019;56:750–7.

    Article  CAS  PubMed  Google Scholar 

  155. Li W, Wu H, Li F, Tian S, Kherraf Z-E, Zhang J, Ni X, Lv M, Liu C, Tan Q, Shen Y, Amiri-Yekta A, et al. Biallelic mutations in CFAP65 cause male infertility with multiple morphological abnormalities of the sperm flagella in humans and mice. J Med Genet. 2020;57:89–95.

    Article  CAS  PubMed  Google Scholar 

  156. Zhang X, Shen Y, Wang X, Yuan G, Zhang C, Yang Y. A novel homozygous CFAP65 mutation in humans causes male infertility with multiple morphological abnormalities of the sperm flagella. Clin Genet. 2019;96:541–8.

    Article  CAS  PubMed  Google Scholar 

  157. Dong FN, Amiri-Yekta A, Martinez G, Saut A, Tek J, Stouvenel L, Lorès P, Karaouzène T, Thierry-Mieg N, Satre V, Brouillet S, Daneshipour A, et al. Absence of CFAP69 causes male infertility due to multiple morphological abnormalities of the flagella in human and mouse. Am J Hum Genet. 2018;102:636–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. He X, Li W, Wu H, Lv M, Liu W, Liu C, Zhu F, Li C, Fang Y, Yang C, Cheng H, Zhang J, et al. Novel homozygous CFAP69 mutations in humans and mice cause severe asthenoteratospermia with multiple morphological abnormalities of the sperm flagella. J Med Genet. 2019;56:96–103.

    Article  CAS  PubMed  Google Scholar 

  159. Tang X, Lin T, Huang G, Long S, Ma J, Yu H, Wang X, Wan L, Yang J. P-052 A novel variant in CFAP69 gene causes morphological abnormalities of human sperm flagella with good ART outcomes. Hum Reprod. 2023;38:dead093.417.

    Article  Google Scholar 

  160. Beurois J, Martinez G, Cazin C, Kherraf Z-E, Amiri-Yekta A, Thierry-Mieg N, Bidart M, Petre G, Satre V, Brouillet S, Touré A, Arnoult C, et al. CFAP70 mutations lead to male infertility due to severe astheno-teratozoospermia. A case report Hum Reprod. 2019;34:2071–9.

    Article  PubMed  Google Scholar 

  161. Jin H-J, Wang J-L, Geng X-Y, Wang C-Y, Wang B-B, Chen S-R. CFAP70 is a solid and valuable target for the genetic diagnosis of oligo-astheno-teratozoospermia in infertile men. EBioMedicine. 2023;93:104675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Chen J, Wang Y, Wu B, Shi H, Wang L. Experimental and molecular support for Cfap70 as a causative gene of ‘multiple morphological abnormalities of the flagella’ with male infertility†. Biol Reprod. 2023;109:450–60.

    Article  PubMed  Google Scholar 

  163. Kherraf Z-E, Amiri-Yekta A, Dacheux D, Karaouzène T, Coutton C, Christou-Kent M, Martinez G, Landrein N, Le Tanno P, Fourati Ben Mustapha S, Halouani L, Marrakchi O, et al. A Homozygous ancestral SVA-insertion-mediated deletion in WDR66 induces multiple morphological abnormalities of the sperm flagellum and male infertility. Am J Hum Genet. 2018;103:400–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Li W, He X, Yang S, Liu C, Wu H, Liu W, Lv M, Tang D, Tan J, Tang S, Chen Y, Wang J, et al. Biallelic mutations of CFAP251 cause sperm flagellar defects and human male infertility. J Hum Genet. 2019;64:49–54.

    Article  CAS  PubMed  Google Scholar 

  165. Auguste Y, Delague V, Desvignes J-P, Longepied G, Gnisci A, Besnier P, Levy N, Beroud C, Megarbane A, Metzler-Guillemain C, Mitchell MJ. Loss of calmodulin- and radial-spoke-associated complex protein CFAP251 leads to immotile spermatozoa lacking mitochondria and infertility in men. Am J Hum Genet. 2018;103:413–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wang J, Zhang C, Tang H, Zheng A, Li H, Yang S, Xiang J. Successful results of intracytoplasmic sperm injection of a Chinese patient with multiple morphological abnormalities of sperm flagella caused by a novel splicing mutation in CFAP251. Front Genet. 2022;12:783790.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Ben Khelifa M, Coutton C, Zouari R, Karaouzène T, Rendu J, Bidart M, Yassine S, Pierre V, Delaroche J, Hennebicq S, Grunwald D, Escalier D, et al. Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am J Hum Genet. 2014;94:95–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Jiang C, Zhang X, Zhang H, Guo J, Zhang C, Li J, Yang Y. Novel bi-allelic mutations in DNAH1 cause multiple morphological abnormalities of the sperm flagella resulting in male infertility. Transl Androl Urol. 2021;10:1656–64.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Sha Y, Yang X, Mei L, Ji Z, Wang X, Ding L, Li P, Yang S. DNAH1 gene mutations and their potential association with dysplasia of the sperm fibrous sheath and infertility in the Han Chinese population. Fertil Steril. 2017;107:1312-1318.e2.

    Article  CAS  PubMed  Google Scholar 

  170. Wambergue C, Zouari R, Fourati Ben Mustapha S, Martinez G, Devillard F, Hennebicq S, Satre V, Brouillet S, Halouani L, Marrakchi O, Makni M, Latrous H, et al. Patients with multiple morphological abnormalities of the sperm flagella due to DNAH1 mutations have a good prognosis following intracytoplasmic sperm injection. Hum Reprod. 2016;31:1164–72.

    Article  CAS  PubMed  Google Scholar 

  171. Wang X, Jin H, Han F, Cui Y, Chen J, Yang C, Zhu P, Wang W, Jiao G, Wang W, Hao C, Gao Z. Homozygous DNAH1 frameshift mutation causes multiple morphological anomalies of the sperm flagella in Chinese. Clin Genet. 2017;91:313–21.

    Article  CAS  PubMed  Google Scholar 

  172. Amiri-Yekta A, Coutton C, Kherraf Z-E, Karaouzène T, Le Tanno P, Sanati MH, Sabbaghian M, Almadani N, Sadighi Gilani MA, Hosseini SH, Bahrami S, Daneshipour A, et al. Whole-exome sequencing of familial cases of multiple morphological abnormalities of the sperm flagella (MMAF) reveals new DNAH1 mutations. Hum Reprod. 2016;31:2872–80.

    Article  CAS  PubMed  Google Scholar 

  173. Hu H, Wei T, Feng Z, Li S, Zhao R, Yi X, Hu T, Zhao H, Li C, Liu Z. Novel biallelic DNAH1 variations cause multiple morphological abnormalities of the sperm flagella. DNA Cell Biol. 2021;40:833–40.

    Article  CAS  PubMed  Google Scholar 

  174. Khan R, Zaman Q, Chen J, Khan M, Ma A, Zhou J, Zhang B, Ali A, Naeem M, Zubair M, Zhao D, Shah W, et al. Novel loss-of-function mutations in DNAH1 displayed different phenotypic spectrum in humans and mice. Front Endocrinol. 2021;12:765639.

    Article  Google Scholar 

  175. Zhuang B-J, Xu S-Y, Dong L, Zhang P-H, Zhuang B-L, Huang X-P, Li G-S, You Y-D, Chen D, Yu X-J, Chang D-G. Novel DNAH1 mutation loci lead to multiple morphological abnormalities of the sperm flagella and literature review. World J Mens Health. 2022;40:551.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Long S, Fu L, Ma J, Yu H, Tang X, Hu T, Han W, Liu W, Liao H, Fu T, Huang G, Lu W, et al. Novel biallelic variants in DNAH1 cause multiple morphological abnormalities of sperm flagella with favorable outcomes of fertility after ICSI in Han Chinese males. Andrology. 2024;12:349–64.

    Article  CAS  PubMed  Google Scholar 

  177. Wang M, Yang Q-Y, Zhou J-P, Tan H-P, Hu J, Jin L, Zhu L-X. Novel compound heterozygous mutations in DNAH1 cause primary infertility in Han Chinese males with multiple morphological abnormalities of the sperm flagella. Asian J Androl. 2023;25:512–9.

    Article  CAS  PubMed  Google Scholar 

  178. Wang X, Sha Y, Zhu X, et al. Identification of novel mutation sites in DNAH1 of multiple morphological anomalies of the flagella patients. Research Square. 2021. https://doi.org/10.21203/rs.3.rs-279593/v1.

  179. Hwang JY, Nawaz S, Choi J, Wang H, Hussain S, Nawaz M, Lopez-Giraldez F, Jeong K, Dong W, Oh J-N, Bilguvar K, Mane S, et al. Genetic defects in DNAH2 underlie male infertility with multiple morphological abnormalities of the sperm flagella in humans and mice. Front Cell Dev Biol. 2021;9:662903.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Li Y, Sha Y, Wang X, Ding L, Liu W, Ji Z, Mei L, Huang X, Lin S, Kong S, Lu J, Qin W, et al. DNAH2 is a novel candidate gene associated with multiple morphological abnormalities of the sperm flagella. Clin Genet. 2019;95:590–600.

    Article  CAS  PubMed  Google Scholar 

  181. Gao Y, Tian S, Sha Y, Zha X, Cheng H, Wang A, Liu C, Lv M, Ni X, Li Q, Wu H, Tan Q, et al. Novel bi-allelic variants in DNAH2 cause severe asthenoteratozoospermia with multiple morphological abnormalities of the flagella. Reprod Biomed Online. 2021;42:963–72.

    Article  CAS  PubMed  Google Scholar 

  182. Weng M, Sha Y, Zeng YU, Huang N, Liu W, Zhang X, Zhou H. Mutations in DNAH8 contribute to multiple morphological abnormalities of sperm flagella and male infertility. Acta Biochim Biophys Sin. 2021;53:472–80.

    Article  CAS  PubMed  Google Scholar 

  183. Yang Y, Jiang C, Zhang X, Liu X, Li J, Qiao X, Liu H, Shen Y. Loss-of-function mutation in DNAH8 induces asthenoteratospermia associated with multiple morphological abnormalities of the sperm flagella. Clin Genet. 2020;98:396–401.

    Article  CAS  PubMed  Google Scholar 

  184. Liu C, Miyata H, Gao Y, Sha Y, Tang S, Xu Z, Whitfield M, Patrat C, Wu H, Dulioust E, Tian S, Shimada K, et al. Bi-allelic DNAH8 variants lead to multiple morphological abnormalities of the sperm flagella and primary male infertility. Am J Hum Genet. 2020;107:330–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Zhou Z, Mao X, Chen B, Mu J, Wang W, Li B, Yan Z, Dong J, Li Q, Kuang Y, Wang L, Wu L, et al. A novel splicing variant in DNAH8 causes asthenozoospermia. J Assist Reprod Genet. 2021;38:1545–50.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Dil S, Khan A, Unar A, Yang M-L, Ali I, Zeb A, Zhang H, Zhou J-T, Zubair M, Khan K, Bai S, Shi Q-H. A novel homozygous frameshift variant in DNAH8 causes multiple morphological abnormalities of the sperm flagella in a consanguineous Pakistani family. Asian J Androl. 2023;25:350–5.

    Article  CAS  PubMed  Google Scholar 

  187. Tu C, Cong J, Zhang Q, He X, Zheng R, Yang X, Gao Y, Wu H, Lv M, Gu Y, Lu S, Liu C, et al. Bi-allelic mutations of DNAH10 cause primary male infertility with asthenoteratozoospermia in humans and mice. Am J Hum Genet. 2021;108:1466–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Li K, Wang G, Lv M, Wang J, Gao Y, Tang F, Xu C, Yang W, Yu H, Shao Z, Geng H, Tan Q, et al. Bi-allelic variants in DNAH10 cause asthenoteratozoospermia and male infertility. J Assist Reprod Genet. 2022;39:251–9.

    Article  PubMed  Google Scholar 

  189. Geng H, Wang K, Liang D, Ni X, Yu H, Tang D, Lv M, Wu H, Li K, Shen Q, Gao Y, Xu C, et al. Further evidence from DNAH12 supports favorable fertility outcomes of infertile males with dynein axonemal heavy chain gene family variants. iScience. 2024;27:110366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Liu Z, Wang C, Ni F, Yang F, Wei H, Li T, Wang J, Wang B. Novel compound heterozygous variants of DNAH17 in a Chinese infertile man with multiple morphological abnormalities of sperm flagella. Andrologia. 2022;54:e14553.

    Article  CAS  PubMed  Google Scholar 

  191. Song B, Yang T, Shen Q, Liu Y, Wang C, Li G, Gao Y, Cao Y, He X. Novel mutations in DNAH17 cause sperm flagellum defects and their influence on ICSI outcome. J Assist Reprod Genet. 2023;40:2485–92.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Whitfield M, Thomas L, Bequignon E, Schmitt A, Stouvenel L, Montantin G, Tissier S, Duquesnoy P, Copin B, Chantot S, Dastot F, Faucon C, et al. Mutations in DNAH17, encoding a sperm-specific axonemal outer dynein arm heavy chain, cause isolated male infertility due to asthenozoospermia. Am J Hum Genet. 2019;105:198–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Sha Y, Wei X, Ding L, Mei L, Huang X, Lin S, Su Z, Kong L, Zhang Y, Ji Z. DNAH17 is associated with asthenozoospermia and multiple morphological abnormalities of sperm flagella. Ann Hum Genet. 2020;84:271–9.

    Article  CAS  PubMed  Google Scholar 

  194. Zhang B, Ma H, Khan T, Ma A, Li T, Zhang H, Gao J, Zhou J, Li Y, Yu C, Bao J, Ali A, et al. A DNAH17 missense variant causes flagella destabilization and asthenozoospermia. J Exp Med. 2020;217:e20182365.

    Article  PubMed  Google Scholar 

  195. Song B, Liu C, Gao Y, Marley JL, Li W, Ni X, Liu W, Chen Y, Wang J, Wang C, Zhou P, Wei Z, et al. Novel compound heterozygous variants in dynein axonemal heavy chain 17 cause asthenoteratospermia with sperm flagellar defects. J Genet Genomics Yi Chuan Xue Bao. 2020;47:713–7.

    Article  CAS  PubMed  Google Scholar 

  196. Jia M, Shi R, Xue X. Novel DNAH17 mutations associated with fertilization failures after ICSI. Gynecol Endocrinol Off J Int Soc Gynecol Endocrinol. 2021;37:769–71.

    Article  CAS  Google Scholar 

  197. Zheng R, Sun Y, Jiang C, Chen D, Yang Y, Shen Y. A novel mutation in DNAH17 is present in a patient with multiple morphological abnormalities of the flagella. Reprod Biomed Online. 2021;43:532–41.

    Article  CAS  PubMed  Google Scholar 

  198. Chen L, Ouyang J, Li X, Xiao X, Sun W, Li S, Zhou L, Liao Y, Zhang Q. DNAH17 is essential for rat spermatogenesis and fertility. J Genet. 2021;100:14.

    Article  CAS  PubMed  Google Scholar 

  199. Zhang B, Khan I, Liu C, Ma A, Khan A, Zhang Y, Zhang H, Kakakhel MBS, Zhou J, Zhang W, Li Y, Ali A, et al. Novel loss-of-function variants in DNAH17 cause multiple morphological abnormalities of the sperm flagella in humans and mice. Clin Genet. 2021;99:176–86.

    Article  CAS  PubMed  Google Scholar 

  200. Martinez G, Kherraf Z-E, Zouari R, Fourati Ben Mustapha S, Saut A, Pernet-Gallay K, Bertrand A, Bidart M, Hograindleur JP, Amiri-Yekta A, Kharouf M, Karaouzène T, et al. Whole-exome sequencing identifies mutations in FSIP2 as a recurrent cause of multiple morphological abnormalities of the sperm flagella. Hum Reprod. 2018;33:1973–84.

    Article  CAS  PubMed  Google Scholar 

  201. Liu W, Wu H, Wang L, Yang X, Liu C, He X, Li W, Wang J, Chen Y, Wang H, Gao Y, Tang S, et al. Homozygous loss-of-function mutations in FSIP2 cause male infertility with asthenoteratospermia. J Genet Genomics. 2019;46:53–6.

    Article  CAS  PubMed  Google Scholar 

  202. Gao F, Ye F, Zhang Q, Du Y, Xu W, Qi M, Ding G, Zhang L, Shu C, Guo X, Li S, Zheng M, et al. Compound Heterozygous mutations in FSIP2 cause morphological abnormalities in sperm flagella leading to male infertility. Andrologia. 2023;2023:1–9.

    Article  Google Scholar 

  203. Liu M, Sun Y, Li Y, Sun J, Yang Y, Shen Y. Novel mutations in FSIP2 lead to multiple morphological abnormalities of the sperm flagella and poor ICSI prognosis. Gene. 2021;781:145536.

    Article  CAS  PubMed  Google Scholar 

  204. Lv M, Tang D, Yu H, Geng H, Zhou Y, Shao Z, Li K, Gao Y, Guo S, Xu C, Tan Q, Liu C, et al. Novel FSIP2 variants induce super-length mitochondrial sheath and asthenoteratozoospermia in humans. Int J Biol Sci. 2023;19:393–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Hou M, Xi Q, Zhu L, Jia W, Liu Z, Wang C, Zhou X, Zhang D, Xing C, Peng X, Luo Y, Jin L, et al. Novel compound heterozygous mutation in FSIP2 causes multiple morphological abnormalities of the sperm flagella (MMAF) and male infertility. Reprod Sci Thousand Oaks Calif. 2022;29:2697–702.

    Article  CAS  Google Scholar 

  206. Yuan Y, Xu W, Chen Z, Chen Y, Zhang L, Zheng L, Luo T, Chen H. Successful outcomes of intracytoplasmic sperm injection–embryo transfer using ejaculated spermatozoa from two Chinese asthenoteratozoospermic brothers with a compound heterozygous FSIP2 mutation. Andrologia. 2022;54:e14351.

    Article  CAS  PubMed  Google Scholar 

  207. Fang X, Gamallat Y, Chen Z, Mai H, Zhou P, Sun C, Li X, Li H, Zheng S, Liao C, Yang M, Li Y, et al. Hypomorphic and hypermorphic mouse models of Fsip2 indicate its dosage-dependent roles in sperm tail and acrosome formation. Development. 2021;148:dev199216.

    Article  CAS  PubMed  Google Scholar 

  208. Gamallat Y, Fang X, Mai H, Liu X, Li H, Zhou P, Han D, Zheng S, Liao C, Yang M, Li Y, Zuo L, et al. Bi-allelic mutation in Fsip1 impairs acrosome vesicle formation and attenuates flagellogenesis in mice. Redox Biol. 2021;43:101969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Shen Y, Zhang F, Li F, Jiang X, Yang Y, Li X, Li W, Wang X, Cheng J, Liu M, Zhang X, Yuan G, et al. Loss-of-function mutations in QRICH2 cause male infertility with multiple morphological abnormalities of the sperm flagella. Nat Commun. 2019;10:433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Kherraf Z, Cazin C, Coutton C, Amiri-Yekta A, Martinez G, Boguenet M, Fourati Ben Mustapha S, Kharouf M, Gourabi H, Hosseini SH, Daneshipour A, Touré A, et al. Whole exome sequencing of men with multiple morphological abnormalities of the sperm flagella reveals novel homozygous QRICH2 mutations. Clin Genet. 2019;96:394–401.

    Article  CAS  PubMed  Google Scholar 

  211. Xu C, Tang D, Shao Z, Geng H, Gao Y, Li K, Tan Q, Wang G, Wang C, Wu H, Li G, Lv M, et al. Homozygous SPAG6 variants can induce nonsyndromic asthenoteratozoospermia with severe MMAF. Reprod Biol Endocrinol. 2022;20:41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Wu H, Wang J, Cheng H, Gao Y, Liu W, Zhang Z, Jiang H, Li W, Zhu F, Lv M, Liu C, Tan Q, et al. Patients with severe asthenoteratospermia carrying SPAG6 or RSPH3 mutations have a positive pregnancy outcome following intracytoplasmic sperm injection. J Assist Reprod Genet. 2020;37:829–40.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Sapiro R, Kostetskii I, Olds-Clarke P, Gerton GL, Radice GL, Strauss JF. Male infertility, impaired sperm motility, and hydrocephalus in mice deficient in sperm-associated antigen 6. Mol Cell Biol. 2002;22:6298–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Liu C, Lv M, He X, Zhu Y, Amiri-Yekta A, Li W, Wu H, Kherraf Z-E, Liu W, Zhang J, Tan Q, Tang S, et al. Homozygous mutations in SPEF2 induce multiple morphological abnormalities of the sperm flagella and male infertility. J Med Genet. 2020;57:31–7.

    Article  CAS  PubMed  Google Scholar 

  215. Liu W, Sha Y, Li Y, Mei L, Lin S, Huang X, Lu J, Ding L, Kong S, Lu Z. Loss-of-function mutations in SPEF2 cause multiple morphological abnormalities of the sperm flagella (MMAF). J Med Genet. 2019;56:678–84.

    Article  CAS  PubMed  Google Scholar 

  216. Sha Y, Liu W, Wei X, Zhu X, Luo X, Liang L, Guo T. Biallelic mutations in sperm flagellum 2 cause human multiple morphological abnormalities of the sperm flagella (MMAF) phenotype. Clin Genet. 2019;96:385–93.

    Article  CAS  PubMed  Google Scholar 

  217. Lehti MS, Henriksson H, Rummukainen P, Wang F, Uusitalo-Kylmälä L, Kiviranta R, Heino TJ, Kotaja N, Sironen A. Cilia-related protein SPEF2 regulates osteoblast differentiation. Sci Rep. 2018;8:859.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Zhang Y-T, Shen G, Zhuo L-C, Yang X, Wang S-Y, Ruan T-C, Jiang C, Wang X, Wang Y, Yang Y-H, Shen Y. Novel variations in TENT5D lead to teratozoospermia in infertile patients. Andrology. 2024;12(6):1336–46.

    Article  CAS  PubMed  Google Scholar 

  219. Sha Y, Liu W, Tang S, Zhang X, Xiao Z, Xiao Y, Deng H, Zhou H, Wei X. TENT5D disruption causes oligoasthenoteratozoospermia and male infertility. Andrology. 2023;11:1121–31.

    Article  CAS  PubMed  Google Scholar 

  220. Liu W, He X, Yang S, Zouari R, Wang J, Wu H, Kherraf Z-E, Liu C, Coutton C, Zhao R, Tang D, Tang S, et al. Bi-allelic mutations in TTC21A induce asthenoteratospermia in humans and mice. Am J Hum Genet. 2019;104:738–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Liu G, Yin X, Xing X, Yin S, Shen Y, Zhang H, Lin G, Lu G, Li W. Novel mutation in TTC21A triggers partial nonsense-mediated mRNA decay and causes male infertility with MMAF. Clin Genet. 2022;102:459–60.

    Article  CAS  PubMed  Google Scholar 

  222. Liu C, He X, Liu W, Yang S, Wang L, Li W, Wu H, Tang S, Ni X, Wang J, Gao Y, Tian S, et al. Bi-allelic mutations in TTC29 cause male subfertility with asthenoteratospermia in humans and mice. Am J Hum Genet. 2019;105:1168–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Lorès P, Dacheux D, Kherraf Z-E, Nsota Mbango J-F, Coutton C, Stouvenel L, Ialy-Radio C, Amiri-Yekta A, Whitfield M, Schmitt A, Cazin C, Givelet M, et al. Mutations in TTC29, encoding an evolutionarily conserved axonemal protein, result in asthenozoospermia and male infertility. Am J Hum Genet. 2019;105:1148–67.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Dai S, Liang Y, Liu M, Yang Y, Liu H, Shen Y. Novel biallelic mutations in TTC29 cause asthenoteratospermia and male infertility. Mol Genet Genomic Med. 2022;10:e2078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Lin Y-H, Wang Y-Y, Lai T-H, Teng J-L, Lin C-W, Ke C-C, Yu I-S, Lee H-L, Chan C-C, Tung C-H, Conrad DF, O’Bryan MK, et al. Deleterious genetic changes in AGTPBP1 result in teratozoospermia with sperm head and flagella defects. J Cell Mol Med. 2024;28:e18031.

    Article  CAS  PubMed  Google Scholar 

  226. Kim N, Xiao R, Choi H, Kim J-H, Sang-Jun U, Chankyu P. Abnormal sperm development in pcd3J-/- mice: the importance of Agtpbp1 in spermatogenesis. Mol Cells. 2011;31:39–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Guo T, Tu C-F, Yang D-H, Ding S-Z, Lei C, Wang R-C, Liu L, Kang X, Shen X-Q, Yang Y-F, Tan Z-P, Tan Y-Q, et al. Bi-allelic BRWD1 variants cause male infertility with asthenoteratozoospermia and likely primary ciliary dyskinesia. Hum Genet. 2021;140:761–73.

    Article  CAS  PubMed  Google Scholar 

  228. Philipps DL, Wigglesworth K, Hartford SA, Sun F, Pattabiraman S, Schimenti K, Handel M, Eppig JJ, Schimenti JC. The dual bromodomain and WD repeat-containing mouse protein BRWD1 is required for normal spermiogenesis and the oocyte–embryo transition. Dev Biol. 2008;317:72–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Zhang X, Zheng R, Liang C, Liu H, Zhang X, Ma Y, Liu M, Zhang W, Yang Y, Liu M, Jiang C, Ren Q, et al. Loss-of-function mutations in CEP78 cause male infertility in humans and mice. Sci Adv. 2022;8:eabn0968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Zhu T, Zhang Y, Sheng X, Zhang X, Chen Y, Guo Y, Qi Y, Zhao Y, Zhou Q, Chen X, Guo X, Zhao C. Study on gene knockout mice and human mutant individual reveals absence of CEP78 causes photoreceptor and sperm flagella impairments. bioRxiv. 2022. https://doi.org/10.1101/2022.01.25.477668.

  231. Zhang X, Wang L, Ma Y, Wang Y, Liu H, Liu M, Qin L, Li J, Jiang C, Zhang X, Shan X, Liu Y, et al. CEP128 is involved in spermatogenesis in humans and mice. Nat Commun. 2022;13:1395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Tian S, Tu C, He X, Meng L, Wang J, Tang S, Gao Y, Liu C, Wu H, Zhou Y, Lv M, Lin G, et al. Biallelic mutations in CFAP54 cause male infertility with severe MMAF and NOA. J Med Genet. 2023;60:827–34.

    Article  CAS  PubMed  Google Scholar 

  233. McKenzie CW, Craige B, Kroeger TV, Finn R, Wyatt TA, Sisson JH, Pavlik JA, Strittmatter L, Hendricks GM, Witman GB, Lee L. CFAP54 is required for proper ciliary motility and assembly of the central pair apparatus in mice. Mol Biol Cell. 2015;26:3140–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Tan C, Meng L, Lv M, He X, Sha Y, Tang D, Tan Y, Hu T, He W, Tu C, Nie H, Zhang H, et al. Bi-allelic variants in DNHD1 cause flagellar axoneme defects and asthenoteratozoospermia in humans and mice. Am J Hum Genet. 2022;109:157–71.

    Article  CAS  PubMed  Google Scholar 

  235. Martinez G, Barbotin A-L, Cazin C, Wehbe Z, Boursier A, Amiri-Yekta A, Daneshipour A, Hosseini S-H, Rives N, Feraille A, Thierry-Mieg N, Bidart M, et al. New mutations in DNHD1 cause multiple morphological abnormalities of the sperm flagella. Int J Mol Sci. 2023;24:2559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Zhang J, He X, Wu H, Zhang X, Yang S, Liu C, Liu S, Hua R, Zhou S, Zhao S, Hu F, Zhang J, et al. Loss of DRC1 function leads to multiple morphological abnormalities of the sperm flagella and male infertility in human and mouse. Hum Mol Genet. 2021;30:1996–2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Lv M, Liu W, Chi W, Ni X, Wang J, Cheng H, Li W-Y, Yang S, Wu H, Zhang J, Gao Y, Liu C, et al. Homozygous mutations in DZIP1 can induce asthenoteratospermia with severe MMAF. J Med Genet. 2020;57:445–53.

    Article  CAS  PubMed  Google Scholar 

  238. Li Y, Wang W-L, Tu C-F, Meng L-L, Hu T-Y, Du J, Lin G, Nie H-C, Tan Y-Q. A novel homozygous frameshift mutation in MNS1 associated with severe oligoasthenoteratozoospermia in humans. Asian J Androl. 2020;23:197–204.

    Article  PubMed Central  Google Scholar 

  239. Zhou J, Yang F, Leu NA, Wang PJ. MNS1 is essential for spermiogenesis and motile ciliary functions in mice. PLoS Genet. 2012;8:e1002516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Liu M, Jiang C, Zhang X, Zhang G, Liu M, Zheng R, Yang Y, Shen Y. PRSS55 is a novel potential causative gene for human male infertility. Reprod Biomed Online. 2022;45:553–62.

    Article  CAS  PubMed  Google Scholar 

  241. Zhu F, Li W, Zhou X, Chen X, Zheng M, Cui Y, Liu X, Guo X, Zhu H. PRSS55 plays an important role in the structural differentiation and energy metabolism of sperm and is required for male fertility in mice. J Cell Mol Med. 2021;25:2040–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Wang G, Zhu X, Gao Y, Lv M, Li K, Tang D, Wu H, Xu C, Geng H, Shen Q, Zha X, Duan Z, et al. Biallelic loss-of-function mutations in SEPTIN4 (C17ORF47), encoding a conserved annulus protein, cause thin midpiece spermatozoa and male infertility in humans. Hum Mutat. 2022;43:2079–90.

    Article  CAS  PubMed  Google Scholar 

  243. Ihara M, Kinoshita A, Yamada S, Tanaka H, Tanigaki A, Kitano A, Goto M, Okubo K, Nishiyama H, Ogawa O, Takahashi C, Itohara S, et al. Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Dev Cell. 2005;8:343–52.

    Article  CAS  PubMed  Google Scholar 

  244. Zheng H, Stratton CJ, Morozumi K, Jin J, Yanagimachi R, Yan W. Lack of Spem1 causes aberrant cytoplasm removal, sperm deformation, and male infertility. Proc Natl Acad Sci. 2007;104:6852–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Bao J, Zhang J, Zheng H, Xu C, Yan W. UBQLN1 interacts with SPEM1 and participates in spermiogenesis. Mol Cell Endocrinol. 2010;327:89–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Sethi S, Mehta P, Andrabi W, Mitra K, Rajender S. SPEM1 gene mutation in a case with sperm morphological defects leading to male infertility. Reprod Sci. 2024;31(10):3102–11. https://doi.org/10.1007/s43032-024-01612-w.

    Article  CAS  PubMed  Google Scholar 

  247. Ma H, Zhang B, Khan A, Zhao D, Ma A, Zhou J, Khan I, Khan K, Zhang H, Zhang Y, Jiang X, Dil S, et al. Novel frameshift mutation in STK33 is associated with asthenozoospermia and multiple morphological abnormalities of the flagella. Hum Mol Genet. 2021;30:1977–84.

    Article  CAS  PubMed  Google Scholar 

  248. Martins LR, Bung RK, Koch S, Richter K, Schwarzmüller L, Terhardt D, Kurtulmus B, Niehrs C, Rouhi A, Lohmann I, Pereira G, Fröhling S, et al. Stk33 is required for spermatid differentiation and male fertility in mice. Dev Biol. 2018;433:84–93.

    Article  CAS  PubMed  Google Scholar 

  249. Tang D, Guo S, Chen Y, et al. Association of novel DNAH11 and DNAH5 variants with oligoasthenoteratozoospermia leads to male infertility. Preprint Published online. 2023. https://doi.org/10.21203/rs.3.rs-3730497/v1.

  250. Tu C, Nie H, Meng L, Yuan S, He W, Luo A, Li H, Li W, Du J, Lu G, Lin G, Tan Y-Q. Identification of DNAH6 mutations in infertile men with multiple morphological abnormalities of the sperm flagella. Sci Rep. 2019;9:15864.

    Article  PubMed  PubMed Central  Google Scholar 

  251. Huang F, Zeng J, Liu D, Zhang J, Liang B, Gao J, Yan R, Shi X, Chen J, Song W, Huang H-L. A novel frameshift mutation in DNAH6 associated with male infertility and asthenoteratozoospermia. Front Endocrinol. 2023;14:1122004.

    Article  Google Scholar 

  252. Shao Z-M, Zhu Y-T, Gu M, Guo S-C, Yu H, Li K-K, Tang D-D, Xu Y-P, Lv M-R. Novel variants in DNAH6 cause male infertility associated with multiple morphological abnormalities of the sperm flagella (MMAF) and ICSI outcomes. Asian J Androl. 2023;26:91–8.

    Article  PubMed  PubMed Central  Google Scholar 

  253. Guo T, Lu C, Yang D, Lei C, Liu Y, Xu Y, Yang B, Wang R, Luo H. Case report: DNAAF4 variants cause primary ciliary dyskinesia and infertility in two Han Chinese families. Front Genet. 2022;13:934920.

    Article  PubMed  PubMed Central  Google Scholar 

  254. Xu Y, Wang J, Liu J-H, Gao Q-Q, Wang B, Xu Z-P. Identification of a novel splice site mutation in the DNAAF4 gene of a Chinese patient with primary ciliary dyskinesia. Asian J Androl. 2023;25:713–8.

    Article  PubMed  PubMed Central  Google Scholar 

  255. Liu M, Li J, Jiang C, Zhou Y, Sun Y, Yang Y, Shen Y. A novel homozygous mutation in DNAJB13—a gene associated with the sperm axoneme—leads to teratozoospermia. J Assist Reprod Genet. 2022;39:757–64.

    Article  PubMed  PubMed Central  Google Scholar 

  256. El Khouri E, Thomas L, Jeanson L, Bequignon E, Vallette B, Duquesnoy P, Montantin G, Copin B, Dastot-Le Moal F, Blanchon S, Papon JF, Lorès P, et al. Mutations in DNAJB13, encoding an HSP40 family member, cause primary ciliary dyskinesia and male infertility. Am J Hum Genet. 2016;99:489–500.

    Article  PubMed  PubMed Central  Google Scholar 

  257. Aprea I, Wilken A, Krallmann C, Nöthe-Menchen T, Olbrich H, Loges NT, Dougherty GW, Bracht D, Brenker C, Kliesch S, Strünker T, Tüttelmann F, et al. Pathogenic gene variants in CCDC39, CCDC40, RSPH1, RSPH9, HYDIN, and SPEF2 cause defects of sperm flagella composition and male infertility. Front Genet. 2023;14:1117821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Yu H, Shi X, Shao Z, Geng H, Guo S, Li K, Gu M, Xu C, Gao Y, Tan Q, Duan Z, Wu H, et al. Novel HYDIN variants associated with male infertility in two Chinese families. Front Endocrinol. 2023;14:1118841.

    Article  Google Scholar 

  259. Gao Y, Xu C, Tan Q, Shen Q, Wu H, Lv M, Li K, Tang D, Song B, Xu Y, Zhou P, Wei Z, et al. Case report: novel biallelic mutations in ARMC4 cause primary ciliary dyskinesia and male infertility in a Chinese family. Front Genet. 2021;12:715339.

    Article  PubMed  PubMed Central  Google Scholar 

  260. Chen D, Liang Y, Li J, Zhang X, Zheng R, Wang X, Zhang H, Shen Y. A novel CCDC39 mutation causes multiple morphological abnormalities of the flagella in a primary ciliary dyskinesia patient. Reprod Biomed Online. 2021;43:920–30.

    Article  CAS  PubMed  Google Scholar 

  261. Merveille A-C, Davis EE, Becker-Heck A, Legendre M, Amirav I, Bataille G, Belmont J, Beydon N, Billen F, Clément A, Clercx C, Coste A, et al. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat Genet. 2011;43:72–8.

    Article  CAS  PubMed  Google Scholar 

  262. Sha Y-W, Xu X, Mei L-B, Li P, Su Z-Y, He X-Q, Li L. A homozygous CEP135 mutation is associated with multiple morphological abnormalities of the sperm flagella (MMAF). Gene. 2017;633:48–53.

    Article  CAS  PubMed  Google Scholar 

  263. Sha Y, Wei X, Ding L, Ji Z, Mei L, Huang X, Su Z, Wang W, Zhang X, Lin S. Biallelic mutations of CFAP74 may cause human primary ciliary dyskinesia and MMAF phenotype. J Hum Genet. 2020;65:961–9.

    Article  CAS  PubMed  Google Scholar 

  264. Tang D, Sha Y, Gao Y, Zhang J, Cheng H, Zhang J, Ni X, Wang C, Xu C, Geng H, He X, Cao Y. Novel variants in DNAH9 lead to nonsyndromic severe asthenozoospermia. Reprod Biol Endocrinol. 2021;19:27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Chen H, Zhu Y, Zhu Z, Zhi E, Lu K, Wang X, Liu F, Li Z, Xia W. Detection of heterozygous mutation in hook microtubule-tethering protein 1 in three patients with decapitated and decaudated spermatozoa syndrome. J Med Genet. 2018;55:150–7.

    Article  CAS  PubMed  Google Scholar 

  266. Martinez G, Beurois J, Dacheux D, Cazin C, Bidart M, Kherraf Z-E, Robinson DR, Satre V, Le Gac G, Ka C, Gourlaouen I, Fichou Y, et al. Biallelic variants in MAATS1 encoding CFAP91, a calmodulin-associated and spoke-associated complex protein, cause severe astheno-teratozoospermia and male infertility. J Med Genet. 2020;57:708–16.

    Article  CAS  PubMed  Google Scholar 

  267. Wang L, Wang R, Yang D, Lu C, Xu Y, Liu Y, Guo T, Lei C, Luo H. Novel RSPH4A variants associated with primary ciliary dyskinesia–related infertility in three Chinese families. Front Genet. 2022;13:922287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Ni X, Wang J, Lv M, Liu C, Zhong Y, Tian S, Wu H, Cheng H, Gao Y, Tan Q, Chen B, Li Q, et al. A novel homozygous mutation in WDR19 induces disorganization of microtubules in sperm flagella and nonsyndromic asthenoteratospermia. J Assist Reprod Genet. 2020;37:1431–9.

    Article  PubMed  PubMed Central  Google Scholar 

  269. Zhu X, Liu L, Tian S, Zhao G, Zhi E, Chen Q, Zhang F, Zhang A, Tang S, Liu C. Deleterious variant in FAM71D cause male infertility with asthenoteratospermia. Mol Genet Genomics MGG. 2024;299:35.

    Article  CAS  PubMed  Google Scholar 

  270. Mo S, Deng K, Cao C, Gui Y, Ma Q. FAM71D is dispensable for spermatogenesis and male fertility in mice. Mol Reprod Dev. 2023;90:804–9.

    Article  CAS  PubMed  Google Scholar 

  271. Wang H, Iida-Norita R, Mashiko D, Pham AH, Miyata H, Ikawa M. Golgi associated RAB2 interactor protein family contributes to murine male fertility to various extents by assuring correct morphogenesis of sperm heads. PLOS Genet. 2024;20:e1011337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Li Y, Jiang C, Zhang X, Liu M, Sun Y, Yang Y, Shen Y. The effect of a novel LRRC6 mutation on the flagellar ultrastructure in a primary ciliary dyskinesia patient. J Assist Reprod Genet. 2021;38:689–96.

    Article  PubMed  PubMed Central  Google Scholar 

  273. Liu L, Luo H. Whole-exome sequencing identified a novel compound heterozygous mutation of LRRC6 in a Chinese primary ciliary dyskinesia patient. BioMed Res Int. 2018;2018:1854269.

    PubMed  PubMed Central  Google Scholar 

  274. Li Y, Li Y, Wang Y, Meng L, Tan C, Du J, Tan Y-Q, Nie H, Zhang Q, Lu G, Lin G, Li H, et al. Identification of novel biallelic LRRC6 variants in male Chinese patients with primary ciliary dyskinesia and infertility. J Assist Reprod Genet. 2023;40:41–51.

    Article  PubMed  Google Scholar 

  275. Shi S, Tang X, Long S, et al. A novel homozygous LRRC6 mutation causes male infertility with asthenozoospermia and primary ciliary dyskinesia in humans. Andrology. 2024. https://doi.org/10.1111/andr.13685.

  276. Kim DY, Sub YJ, Kim H-Y, Cho KJ, Choi WI, Choi YJ, Lee MG, Hildebrandt F, Gee HY. LRRC6 regulates biogenesis of motile cilia by aiding FOXJ1 translocation into the nucleus. Cell Commun Signal. 2023;21:142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Niemeyer J, Mentrup T, Heidasch R, Müller SA, Biswas U, Meyer R, Papadopoulou AA, Dederer V, Haug-Kröper M, Adamski V, Lüllmann-Rauch R, Bergmann M, et al. The intramembrane protease SPPL2c promotes male germ cell development by cleaving phospholamban. EMBO Rep. 2019;20:e46449.

    Article  PubMed  PubMed Central  Google Scholar 

  278. Guzick DS, Overstreet JW, Factor-Litvak P, Brazil CK, Nakajima ST, Coutifaris C, Carson SA, Cisneros P, Steinkampf MP, Hill JA, Xu D, Vogel DL, et al. Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med. 2001;345:1388–93.

    Article  CAS  PubMed  Google Scholar 

  279. Kruger TF, Menkveld R, Stander FS, Lombard CJ, Van der Merwe JP, van Zyl JA, Smith K. Sperm morphologic features as a prognostic factor in in vitro fertilization. Fertil Steril. 1986;46:1118–23.

    Article  CAS  PubMed  Google Scholar 

  280. Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HWG, Behre HM, Haugen TB, Kruger T, Wang C, Mbizvo MT, Vogelsong KM. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16:231–45.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Council of Scientific and Industrial Research (CSIR) for funding this study under MLP2026. Poonam Mehta and Shruti Sethi would like to thank the University Grants Commission (460/CSIR-UGC NET DEC.2017 and 191620102885/CSIR-UGC NET DEC.2019, respectively), for graduate fellowships. This manuscript bears CDRI communication number 10812. 

Author information

Authors and Affiliations

Authors

Contributions

MA, PM, and SR conceptualized and wrote the article. PM prepared the figures. SS participated in data sorting, preparing tables, and editing and revising the manuscript. GA and MS edited the manuscript. SR supervised writing, editing, and revising the manuscript. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Rajender Singh.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, M., Mehta, P., Sethi, S. et al. Genetic etiological spectrum of sperm morphological abnormalities. J Assist Reprod Genet 41, 2877–2929 (2024). https://doi.org/10.1007/s10815-024-03274-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-024-03274-8

Keywords

Navigation