Abstract
Twin vertices in simple unweighted graphs are vertices that have the same neighbours, and, in the case of weighted graphs with possible loops, the corresponding incident edges have equal weights. In this paper, we explore the role of twin vertices in quantum state transfer. In particular, we provide characterizations of periodicity, perfect state transfer, and pretty good state transfer between twin vertices in a weighted graph with respect to its adjacency, Laplacian and signless Laplacian matrices. As an application, we provide characterizations of all simple unweighted double cones on regular graphs that exhibit periodicity, perfect state transfer, and pretty good state transfer.
Similar content being viewed by others
Data availability
The study has no associated data.
References
Alvir, R., Dever, S., Lovitz, B., Myer, J., Tamon, C., Xu, Y., Zhan, H.: Perfect state transfer in Laplacian quantum walk. J. Algebraic Combin. 43(4), 801–826 (2016). https://doi.org/10.1007/s10801-015-0642-x
Angeles-Canul, R., Norton, R., Opperman, M., Paribello, C., Russell, M., Tamon, C.: Quantum perfect state transfer on weighted join graphs. Int. J. Quantum Inf. 07(08), 1429–1445 (2009)
Angeles-Canul, R., Norton, R., Opperman, M., Paribello, C., Russell, M., Tamon, C.: Perfect state transfer, integral circulants, and join of graphs. Quantum Inf. Comput. 10(3–4), 0325–0342 (2010). https://doi.org/10.26421/qic10.3-4-10
Bachman, R., Fredette, E., Fuller, J., Landry, M., Opperman, M., Tamon, C., Tollefson, A.: Perfect state transfer on quotient graphs. Quantum Inf. Comput. 12(3–4), 293–313 (2012). https://doi.org/10.26421/qic12.3-4-9
Banchi, L., Coutinho, G., Godsil, C., Severini, S.: Pretty good state transfer in qubit chains—The Heisenberg Hamiltonian. J. Math. Phys. 58(3), 32202 (2017). https://doi.org/10.1063/1.4978327
Bašić, M., Petković, M., Stevanović, D.: Perfect state transfer in integral circulant graphs. Appl. Math. Lett. 22(7), 1117–1121 (2009). https://doi.org/10.1016/j.aml.2008.11.005
Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91(20), 207901 (2003)
Bose, S., Casaccino, A., Mancini, S., Severini, S.: Communication in XYZ all-to-all quantum networks with a missing link. Int. J. Quantum Inf. 7(4), 713–723 (2009). https://doi.org/10.1142/S0219749909005389
Cao, X., Wang, D., Feng, K.: Pretty good state transfer on Cayley graphs over dihedral groups. Discrete Math. 343(1), 111636 (2020). https://doi.org/10.1016/j.disc.2019.111636
Casaccino, A., Lloyd, S., Mancini, S., Severini, S.: Quantum state transfer through a qubit network with energy shifts and fluctuations. Int. J. Quantum Inf. 7(8), 1417–1427 (2009). https://doi.org/10.1142/S0219749909006085
Chen, Q., Godsil, C.D.: Pair state transfer. Quantum Inf. Process. 19, 321 (2019)
Cheung, W.C., Godsil, C.: Perfect state transfer in cubelike graphs. Linear Algebra Appl. 435(10), 2468–2474 (2011). https://doi.org/10.1016/j.laa.2011.04.022
Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92(18), 187902 (2004)
Christandl, M., Datta, N., Dorlas, T.C., Ekert, A., Kay, A., Landahl, A.J.: Perfect transfer of arbitrary states in quantum spin networks. Phys. Rev. A 71(3), 032312 (2005). https://doi.org/10.1103/PhysRevA.71.032312
Coutinho, G., Godsil, C.: Graph spectra and continuous quantum walks. https://www.math.uwaterloo.ca/~cgodsil/quagmire/pdfs/GrfSpc3.pdf (2021)
Coutinho, G.: Quantum State Transfer in Graphs. PhD. Dissertation (2014)
Coutinho, G., Liu, H.: No Laplacian perfect state transfer in trees. SIAM J. Discrete Math. 29(4), 2179–2188 (2015). https://doi.org/10.1137/140989510
Coutinho, G., Godsil, C., Guo, K., Vanhove, F.: Perfect state transfer on distance-regular graphs and association schemes. Linear Algebra Appl. 478, 108–130 (2015). https://doi.org/10.1016/j.laa.2015.03.024
Eisenberg, O., Kempton, M., Lippner, G.: Pretty good quantum state transfer in asymmetric graphs via potential. Discrete Math. 342(10), 2821–2833 (2019). https://doi.org/10.1016/j.disc.2018.10.037
Fan, X., Godsil, C.: Pretty good state transfer on double stars. Linear Algebra Appl. 438(5), 2346–2358 (2013). https://doi.org/10.1016/j.laa.2012.10.006
Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58(2), 915–928 (1998). https://doi.org/10.1103/PhysRevA.58.915. ([quant-ph])
Ge, Y., Greenberg, B., Perez, O., Tamon, C.: Perfect state transfer, graph products and equitable partitions. Int. J. Quantum Inf. 9(3), 823–842 (2011). https://doi.org/10.1142/S0219749911007472
Godsil, C., Smith, J.: Strongly cospectral vertices. arXiv:1709.07975 [math.CO] (2017)
Godsil, C.: Periodic graphs. Electron. J. Combin. 18(1), 1–15 (2011). https://doi.org/10.37236/510
Godsil, C.: State transfer on graphs. Discrete Math. 312(1), 129–147 (2012). https://doi.org/10.1016/j.disc.2011.06.032
Godsil, C.: When can perfect state transfer occur? Electron. J. Linear Algebra 23, 877–890 (2012). https://doi.org/10.13001/1081-3810.1563
Godsil, C., Royle, G.: Algebraic graph theory. Graduate texts in mathematics, vol. 207. Springer (2001)
Godsil, C., Kirkland, S., Severini, S., Smith, J.: Number-theoretic nature of communication in quantum spin systems. Phys. Rev. Lett. 109(5), 3–6 (2012). https://doi.org/10.1103/PhysRevLett.109.050502
Horn, R., Johnson, C.: Topics in matrix analysis. Cambridge University Press, Cambridge (1994)
Horn, R., Johnson, C.: Matrix analysis, 2nd edn. Cambridge University Press, Cambridge (2013)
Johnston, N., Kirkland, S., Plosker, S., Storey, R., Zhang, X.: Perfect quantum state transfer using Hadamard diagonalizable graphs. Linear Algebra Appl. 531, 375–398 (2017). https://doi.org/10.1016/j.laa.2017.05.037
Kay, A.: Perfect, efficient, state transfer and its application as a constructive tool. Int. J. Quantum Inf. 8(4), 641–676 (2010). https://doi.org/10.1142/S0219749910006514
Kay, A.: Basics of perfect communication through quantum networks. Phys. Rev. A 84(2), 022337 (2011). https://doi.org/10.1103/PhysRevA.84.022337
Kempton, M., Lippner, G., Yau, S.-T.: Pretty good state transfer in symmetric spin networks via magnetic field. Quantum Inf. Process. 16(9), 1–23 (2017). https://doi.org/10.1007/s11128-017-1658-z
Kempton, M., Lippner, G., Yau, S.-T.: Perfect state transfer on graphs with a potential. Quantum Inf. Comput. 17(3–4), 0303–0327 (2017). https://doi.org/10.26421/qic17.3-4-7. arXiv:1611.02093
Kendon, V.: Quantum walks on general graphs. Int. J. Quantum Inf. 4(5), 791–805 (2006). https://doi.org/10.1142/S0219749906002195. ([quant-ph])
Kendon, V., Tamon, C.: Perfect state transfer in quantum walks on graphs. J. Comput. Theor. Nanosci. 8(3), 422–433 (2011). https://doi.org/10.1166/jctn.2011.1706
Kirkland, S., Severini, S.: Spin-system dynamics and fault detection in threshold networks. Phys. Rev. A 83, 012310 (2011). https://doi.org/10.1103/PhysRevA.83.012310
Li, Y., Liu, X., Zhang, S., Zhou, S.: Perfect state transfer in NEPS of complete graphs. Discrete Appl. Math. 289, 98–114 (2021). https://doi.org/10.1016/j.dam.2020.09.024
Monterde, H.: Quantum state transfer between twins in graphs. MSc. Thesis (2021) http://hdl.handle.net/1993/35937
Monterde, H.: Strong cospectrality and twin vertices in weighted graphs. Electron. J. Linear Algebra 38, 494–518 (2021)
Pal, H.: Quantum state transfer on a class of circulant graphs. Linear Multilinear Algebra 69, 2527–2538 (2019)
Pal, H.: Laplacian state transfer on graphs with an edge perturbation between twin vertices. Discrete Math. 345(7), 112872 (2022). https://doi.org/10.1016/j.disc.2022.112872
Pal, H., Bhattacharjya, B.: Pretty good state transfer on some NEPS. Discrete Math. 340(4), 746–752 (2017). https://doi.org/10.1016/j.disc.2016.11.026
Pal, H., Bhattacharjya, B.: Pretty good state transfer on circulant graphs. Electron. J. Combin. (2017). https://doi.org/10.37236/6388
van Bommel, C.: A complete characterization of pretty good state transfer on paths. Quantum Inf. Comput. 19(7–8), 601–608 (2019). https://doi.org/10.26421/qic19.7-8-5
Vinet, L., Zhedanov, A.: Almost perfect state transfer in quantum spin chains. Phys. Rev. A 86(5), 052319 (2012). https://doi.org/10.1103/PhysRevA.86.052319
Acknowledgements
H.M. is supported by the University of Manitoba Faculty of Science and Faculty of Graduate Studies. S.K. is supported by NSERC Discovery Grant RGPIN-2019-05408. S.P. is supported by NSERC Discovery Grant Number 1174582, the Canada Foundation for Innovation (CFI) Grant Number 35711, and the Canada Research Chairs (CRC) Program Grant Number 231250. We thank the referees for their comments and suggestions that helped improved this paper.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kirkland, S., Monterde, H. & Plosker, S. Quantum state transfer between twins in weighted graphs. J Algebr Comb 58, 623–649 (2023). https://doi.org/10.1007/s10801-023-01261-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10801-023-01261-3