Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Electrochemical Oxidation of Ferulic Acid in Aqueous Solutions at Gold Oxide and Lead Dioxide Electrodes

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A kinetic study of the electrochemical oxidation of ferulic acid (3-methoxy-4-hydroxycinnamic acid) by direct electron transfer at treated gold disk was combined with results of electrolyses in order to produce total degradation into CO2 and H2O at Ta/PbO2 anode. The oxidation of ferulic acid at gold electrode was studied by cyclic voltammetry. At low concentration, ferulic acid shows one irreversible anodic peak. The peak current shows adsorption characteristics. For ferulic acid concentrations higher than 0.02 mmol  dm−3, the voltammogram shows two anodic peaks. The effect of experimental conditions on the ratio of these two peaks was examined. The proposed mechanism is based on the hypothesis of two-electron oxidation of ferulic acid molecule involving a three intermediate cation mesomers. Hydrolysis of these mesomers leads to the formation of caffeic acid, methoxyhydroquinone and 3,4-dihydroxy-5-methoxycinnamic acid. Then ferulic acid was quantitatively oxidised by electrolysis on lead dioxide to produce, via intermediate aromatic compounds, maleic acid, oxalic acid and formic acid whose oxidation leads to carbon dioxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hamdi J.L. Garcia R. Ellouz (1992) Bioprocess Eng. 8 79 Occurrence Handle10.1007/BF00369268

    Article  Google Scholar 

  2. A. Cicheli M. Solinas (1984) Riv. Merceol. 23 55

    Google Scholar 

  3. F. Caruncio C. Crescenzi A.M. Girelli A. Messina A.M. Tarola (2001) Talanta 55 189 Occurrence Handle10.1016/S0039-9140(01)00417-9

    Article  Google Scholar 

  4. J.B. Heredia J. Torregrosa J.R. Dominguez J.A. Peres (2001) Chemosphere 45 85 Occurrence Handle10.1016/S0045-6535(01)00056-X Occurrence Handle11572595

    Article  PubMed  Google Scholar 

  5. J.B. Heredia J. Torregrosa J.R. Dominguez J.A. Peres (2001) Wat. Res. 35 1077 Occurrence Handle10.1016/S0043-1354(00)00343-2

    Article  Google Scholar 

  6. M.A. Miranda A.M. Amat A. Arques (2001) Water Sci. Technol. 44 325

    Google Scholar 

  7. P. Hapiot A. Neudeck J. Pinson H. Fulcrand P. Neta C. Rolando (1996) J. Electroanal. Chem. 405 169 Occurrence Handle10.1016/0022-0728(95)04412-4

    Article  Google Scholar 

  8. B. Fleszar J. Ploszynska (1985) Electrochim. Acta 30 31 Occurrence Handle10.1016/0013-4686(85)80055-4

    Article  Google Scholar 

  9. N. Belhadj Tahar A. Savall (1998) J. Electrochem. Soc. 145 3427

    Google Scholar 

  10. N. Belhadj Tahar A. Savall (1999) J. Appl. Electrochem. 29 277 Occurrence Handle10.1023/A:1003433519200

    Article  Google Scholar 

  11. L.L. Houk S.K. Johnson J. Feng R.S. Houk D.C. Johnson (1998) J. Appl. Electrochem. 28 1167 Occurrence Handle10.1023/A:1003439727317

    Article  Google Scholar 

  12. V. Smithde Sucre A.P. Watkinson (1981) Can. J. Chem. Eng. 59 52

    Google Scholar 

  13. N. Belhadj Tahar A. Savall (1999) J. New Mat. Electrochem. Syst. 1 19

    Google Scholar 

  14. Ch. Comninellis C. Pulgarin (1993) J. Appl. Electrochem. 23 108 Occurrence Handle10.1007/BF00246946

    Article  Google Scholar 

  15. S. Stucki R. Kötz B. Carcer W. Suter (1991) J. Appl. Electrochem. 21 99 Occurrence Handle10.1007/BF01464288

    Article  Google Scholar 

  16. J. Iniesta P.A. Michand M. Panizza G. Cerisola A. Aldaz Ch. Comninellis (2001) Electrochim. Acta 46 3573 Occurrence Handle10.1016/S0013-4686(01)00630-2

    Article  Google Scholar 

  17. F. Montilla P.A. Michaud V. Morallon J.L. Vasquez Ch. Comninellis (2002) Electrochim. Acta 47 3509 Occurrence Handle10.1016/S0013-4686(02)00318-3

    Article  Google Scholar 

  18. B. Boye P.A. Michaud B. Marselli M.M. Dieng E. Brillas Ch. Comninellis (2002) New Diamond Frontier Carbon Technol. 12 63

    Google Scholar 

  19. A. Kraft M. Stadelmann M. Blaschke (2003) J. Hazard. Mat. 103 247 Occurrence Handle10.1016/j.jhazmat.2003.07.006

    Article  Google Scholar 

  20. J.S. Clarke R.E. Ehigamusoe A.T. Kuhn (1976) J. Electroanal. Chem. 70 333 Occurrence Handle10.1016/0368-1874(76)80212-2

    Article  Google Scholar 

  21. S. Kallel Trabelsi N. Belhadj Tahar R. Abdelhedi (2004) Electrochim. Acta 49 1647 Occurrence Handle10.1016/j.electacta.2003.11.026

    Article  Google Scholar 

  22. R. Abdelhedi M.L. Bouguerra (1990) Electrochim. Acta 25 273 Occurrence Handle10.1016/0013-4686(90)85070-4

    Article  Google Scholar 

  23. L.R. Sharma R.K. Kalia (1975) Chem. Ind. 20 883

    Google Scholar 

  24. M. Gattrell D.W. Kirk (1993) J. Electrochem. Soc. 140 1534

    Google Scholar 

  25. B. Boye M.M. Dieng E. Brillas (2002) Environ. Sci. Technol. 36 3030 Occurrence Handle10.1021/es0103391 Occurrence Handle12144282

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Abdelhedi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trabelsi, S.K., Tahar, N.B., Trabelsi, B. et al. Electrochemical Oxidation of Ferulic Acid in Aqueous Solutions at Gold Oxide and Lead Dioxide Electrodes. J Appl Electrochem 35, 967–973 (2005). https://doi.org/10.1007/s10800-005-6723-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-6723-0

Key words

Navigation