Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Quantum (tmn) Threshold Group Blind Signature Scheme with Flexible Number of Participants

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

With the progress of science and technology, as well as the development of quantum computing and quantum information theory, quantum digital signature schemes have become the focus of current research. Threshold quantum signature has been widely concerned because of its low cost, high security, strong scalability and other advantages. In this paper, we propose a quantum (tmn) threshold group blind signature scheme with flexible number of participants based on quantum entanglement swapping. This scheme has the following characteristics. Any m \((t\leqslant m\leqslant n)\) signers can reconstruct the key K for signature verification by using the Shamir threshold secret sharing scheme and they can generate a signature, which reflects good flexibility in the number of signers. The blind operation of the scheme is XOR operations, which is easier to implement in real scenarios. Security analysis shows that our scheme has unforgeability and non-deniablity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data in this scheme example is rigorously derived by us, so they are valid.

References

  1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Gottesman, D., Chuang, I.: Quantum Digital Signatures. arXiv:0105032 (2001)

  3. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)

    ADS  Google Scholar 

  4. Lu, D.J., Li, Z.H., Yu, J., et al.: A Verifiable Arbitrated Quantum Signature Scheme Based on Controlled Quantum Teleportation. Entropy 24(1), 111–111 (2022)

    ADS  MathSciNet  Google Scholar 

  5. Zheng, T., Chang, Y., Zhang, S.B.: Arbitrated quantum signature scheme with quantum teleportation by using two three-qubit GHZ states. Quantum Inf. Process. 19(5), 163 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Zhang, X., Zhang, J.Z., Xie, S.C.: A secure quantum voting scheme based on quantum group blind signature. Int. J. Theor. Phys. 59(3), 719–729 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Bhavin, M., Tanwar, S., Sharma, N.: Blockchain and quantum blind signature-based hybrid scheme for healthcare 5.0 applications. J. Inf. Secur. Appl. 56, 102673 (2021)

  8. Lai, H., Luo, M., Pieprzyk, J., et al.: An efficient quantum blind digital signature scheme. Sci. Chin.-Inf. Sci. 60(8), 082501 (2017)

    Google Scholar 

  9. Chen, J., Ling, J., Ning, J., et al.: Post quantum proxy signature scheme based on the multivariate public key cryptographic signature. Int. J. Distrib. Sens. Netw. 16(4), 1550147720914775 (2020)

    Google Scholar 

  10. Tan, R.M., Yang, Q.L.: Comments on the “Efficient quantum multi-proxy signature". Quantum Inf. Process. 19(9), 1338–1354 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Fan, T.T., Lu, D.J., You, M.G., et al.: Multi-proxy Signature Scheme Using Five-qubit Entangled State Based on Controlled Quantum Teleportation. Int. J. Theor. Phys. 61, 273 (2022)

    MathSciNet  MATH  Google Scholar 

  12. You, M.G., Lu, D.J., Fan, T.T., et al.: A Quantum Aggregate Signature Scheme Based on Quantum Teleportation Using Four-qubit Cluster State. Int. J. Theor. Phys. 61(6), 155 (2022)

    MathSciNet  MATH  Google Scholar 

  13. Jiang, D.H., Yuan, F., Xu, G.B.: Novel quantum group signature scheme based on orthogonal product states. Mod. Phys. Lett. B 35(26), 2150418 (2021)

    ADS  MathSciNet  Google Scholar 

  14. Gao, M.Z., Yang, W., Liu, Y.: A novel quantum (t, n) threshold group signature based on d-dimensional quantum system. Quantum Inf. Process. (9), 288 (2021)

  15. Qin, H.W., Tang, W.K.S., Tso, R.: Quantum (t, n) threshold group signature based on Bell state. Quantum Inf. Process. 19(2), 120–126 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Shang, T., Pei, Z., Chen, R., et al.: Quantum homomorphic signature with repeatable verification. Computers, Materials & Continua. 59(1), 149–165 (2019)

    Google Scholar 

  17. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Yang, Y.G., Wen, Q.Y.: Threshold proxy quantum signature scheme with threshold shared verification. Sci. China Ser. G: Phys. Mech. Astron. 51(8), 1079–1088 (2008)

  19. Shi, J., Shi, R., Guo, Y., et al.: A (t, n)-threshold scheme of multi-party quantum group signature with irregular quantum Fourier transform. Int. J. Theor. Phys. 51(4), 1038–1049 (2012)

    MATH  Google Scholar 

  20. Zhang, M.W., Yang, B., Tsuyoshi, T.: Group-oriented setting’s multisigncryption scheme with threshold designcryption. Inf. Sci. 181, 4041–4050 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Yu, J., Li, Z.H.: Proxy Multi-Threshold signature scheme. Comput. Eng. Appl. 516, 69–71 (2015)

    Google Scholar 

  22. Qin, H., Tang, W., Tso, R.: Quantum (t, n) threshold group signature based on bell state. Quantum Inf. Process. 19(2), 71 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Guo, R., Cheng, X.G.: Cryptanalysis and improvement of a (t, n) threshold group signature scheme. Quantum Inf. Process. 21(1), 37 (2022)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Chaum, D., Rivest, R.L., Sherman A.T.: Blind Signatures for Untraceable Payments// Springer US. Springer US. 199–203 (1983)

  25. Zhu, H.F., Zhang, Y.L., Li, Z.X.: Efficient Quantum Blind Signature Scheme Based on Quantum Fourier Transform. Int. J. Theor. Phys. 60(6), 2311–2321 (2021)

    MathSciNet  MATH  Google Scholar 

  26. Yu, J., Zhang, J.H.: Quantum (t, n) Threshold Proxy Blind Signature Scheme Based on Bell States. Int. J. Theor. Phys. 61(7), 207 (2022)

    MathSciNet  MATH  Google Scholar 

  27. Zhang, X., Zhang, J.Z., Xie, S.C.: A Secure Quantum Voting Scheme Based on Quantum Group Blind Signature. Int. J. Theor. Phys. 59(3), 719–729 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Wen, X., Niu, X., Ji, L., et al.: A weak blind signature scheme based on quantum cryptography. Opt. Commun. 282(4), 666–669 (2009)

    ADS  Google Scholar 

  29. Su, Q., Huang, Z., Wen, Q.Y., et al.: Quantum blind signature based on Two-State Vector Formalism. Opt. Commun. 283(21), 4408–4410 (2010)

    Google Scholar 

  30. Yang, C.W., Hwang, T., Luo, Y.P.: Enhancement on “quantum blind signature based on two-state vector formalism.". Quantum Inf. Process. 12(01), 109–117 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Zhang, M., Xu, G.A., Chen, X.B., et al.: Attack on the improved quantum blind signature protocol. Int. J. Theor. Phys. 52(2), 331–335 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Khodambashi, S., Zakerolhosseini, A.: A sessional blind signature based on quantum cryptography. Quantum Inf. Process. 13(01), 121–130 (2014)

    ADS  MathSciNet  Google Scholar 

  33. Shi, W.M., Zhang, J.B., Zhou, Y.H., et al.: A new quantum blind signature with unlinkability. Quantum Inf. Process. 14(8), 3019–3030 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Zhang, W., Qiu, D.W., Zou, X.F., et al.: Analyses and improvement of a broadcasting multiple blind signature scheme based on quantum GHZ entanglement. Quantum Inf. Process. 16(6), 150 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Sun, H.W., Zhang, L., Zuo, H.J., et al.: Offline Arbitrated Quantum Blind Dual-Signature Protocol with Better Performance in Resisting Existential Forgery Attack. Int. J. Theor. Phys. 57(9), 2695–2708 (2018)

    MATH  Google Scholar 

  36. Liang, X.Q., Wu, Y.L., Zhang, Y.H., et al.: Quantum Multi-proxy Blind Signature Scheme Based on Four-Qubit Cluster States. Int. J. Theor. Phys. 58(01), 31–39 (2018)

    MATH  Google Scholar 

  37. Zhang, W., Han, Z.F.: Quantum broadcasting multiple blind signature protocol based on three-particle partial entanglement. Acta Phys. Sin. 68(7), 070301 (2019)

    Google Scholar 

  38. Li, X.Y., Chang, Y., Zhang, S.B., et al.: Quantum Blind Signature Scheme Based on Quantum Walk. Int. J. Theor. Phys. 59(7), 2059–2073 (2020)

    MathSciNet  MATH  Google Scholar 

  39. Xia, C.Y., Li, H.F., Hu, J.: A semi-quantum blind signature protocol based on five-particle GHZ state. European Phys. J. Plus. 136(6), 633 (2021)

    ADS  Google Scholar 

  40. Chen, J.J., You, F.C., Li, Z.Z.: Quantum multi-proxy blind signature based on cluster state. Quantum Inf. Process. 21(3), 104 (2022)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Cao, J., Xin, X.J., Li, C.Y., et al.: Security Analysis and Improvement of a Blind Semi quantum Signature. Int. J. Theor. Phys. 62(4), 87 (2023)

    MathSciNet  MATH  Google Scholar 

  42. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(3), 2050–2056 (1999)

    ADS  Google Scholar 

  43. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    ADS  Google Scholar 

  44. Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67(4), 042317 (2003)

    ADS  Google Scholar 

  45. Buhrman, H., Cleve, R., Watrous, J., et al.: Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001)

    ADS  Google Scholar 

  46. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, 054307 (2009)

    ADS  MathSciNet  Google Scholar 

  47. He, Q.Q., Xin, X.J., Yang, Q.L.: Security analysis and improvement of a quantum multi-signature protocol. Quantum Inf. Process. 20(1), 1–21 (2021)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments. This work was supported in part by the Research Program of Chongqing Education Commission under Grant KJQN202001438 and Grant KJQN202001436 and it was also supported by Qinghai Normal University Young and Middle-aged Research Fund (No. 15101049903)

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Zhi-Ming Deng], [Dian-jun Lu], [Teng Chen], [Hua-Jian Mou] and [Xing-Jia Wei]. The frst draft of the manuscript was written by [Zhi-Ming Deng] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript

Corresponding author

Correspondence to Dian-Jun Lu.

Ethics declarations

Conflicts of interest

The authors declare no competing interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, ZM., Lu, DJ., Chen, T. et al. Quantum (tmn) Threshold Group Blind Signature Scheme with Flexible Number of Participants. Int J Theor Phys 62, 201 (2023). https://doi.org/10.1007/s10773-023-05449-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05449-y

Keywords

Navigation