Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Velocity Quantization Approach of the One-Dimensional Dissipative Harmonic Oscillator

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Given a constant of motion for the one-dimensional harmonic oscillator with linear dissipation in the velocity, the problem to get the Hamiltonian for this system is pointed out, and the quantization up to second order in the perturbation approach is used to determine the modification on the eigenvalues when dissipation is taken into consideration. This quantization is realized using the constant of motion instead of the Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caldirola, P. (1941). Nuovo Cimento 18, 393.

    Article  Google Scholar 

  2. Colegrave, R. K. and Abdalla, M. S. (1981). Journal of Physics A: Mathematical and General 14, 2269.

    Article  ADS  MathSciNet  Google Scholar 

  3. Darboux, D. (1984). LečLons sur la théorie général des surfaces et les applications géométriques du calcul infinitésimal, IViéme partie, Gauthoer-Villars, Paris.

    Google Scholar 

  4. Dekker, H. (1977). Physical Review A 16(5), 2126.

    Article  ADS  MathSciNet  Google Scholar 

  5. Dekker, H. (1981). Physical Report 80(1), 1–112.

    Article  ADS  MathSciNet  Google Scholar 

  6. Dirac, P. A. M. (1992). The Principles of Quantum Mechanics. IV edition. Oxford Science Publications.

  7. Dodonov, V. V., Man'kov, V. I., and Skarzhinsky, V. D. (1981). Hadronic Journal 4, 1734.

    MATH  Google Scholar 

  8. Hewitt, E. and Stromberg, K. (1965). Real and Abstrac Analysis, Springer-Verlag N.Y., chapter III.

    Google Scholar 

  9. John, F. (1974). Partial Differential Equations, Springer-Verlag, New York.

    Google Scholar 

  10. Kanai, E. (1948). Progressive Theoretical Physics 3, 440.

    Article  ADS  Google Scholar 

  11. Kobussen, J. A. (1979). Acta Physics of Australia 51, 193.

    MathSciNet  Google Scholar 

  12. López, G. (1996a). Annals of Physics 251(2), 372.

    Article  ADS  MATH  Google Scholar 

  13. López, G. (1996b). Annals Physics 251(2), 363.

    Article  ADS  MATH  Google Scholar 

  14. López, G. (1998). International Journal Theoretical Physics 37(5), 1617.

    Article  MATH  Google Scholar 

  15. López, G. (1999). Partial Differential Equations of First Order and Their Applications to Physics. World Scientific.

  16. López, G. and Hernández, J. I. (1989). Annals of Physics 193(1), 1.

    Article  MathSciNet  MATH  Google Scholar 

  17. Leach, P. G. L. (1983). Journal of Physics A: Mathematical and General 16, 3261.

    Article  ADS  MathSciNet  Google Scholar 

  18. Leubner, C. (1987). Physics Letter A 86, 9.

    MathSciNet  Google Scholar 

  19. Messiah, A. (1958). Quantum Mechanics, vol. I. John Wiley and Sons (New York).

    Google Scholar 

  20. Rosenau da Costa, M., Caldeira, A. O., Dutra, S. M., and Westfahl, H. (2000). Physics Review A 61, 022107.

    Article  ADS  Google Scholar 

  21. Yan, C. C. (1981). American Journal of Physics 49, 296.

    Article  Google Scholar 

  22. Yeon, K. H., Um, C. I., and George, T. F. (1987). Physics Review A 36, 5287.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. López.

Additional information

PACS: 03.20.+i, 03.30.+p, 03.65.−w,03.65.Ca

Rights and permissions

Reprints and permissions

About this article

Cite this article

López, G., López, P. Velocity Quantization Approach of the One-Dimensional Dissipative Harmonic Oscillator. Int J Theor Phys 45, 734–742 (2006). https://doi.org/10.1007/s10773-006-9064-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-006-9064-9

Keywords

Navigation