Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The optimized wavelet filters for speech compression

  • Published:
International Journal of Speech Technology Aims and scope Submit manuscript

Abstract

In this paper, optimized wavelet filters for speech compression are proposed whose wavelet filter coefficients are derived with different window techniques such as Kaiser and Blackman windows via simple linear optimization. When the developed wavelet filters are exploited for speech compression, they not only give better compression ratio but also yield good fidelity parameters as compared to other wavelet filters. A comparative study of performance of different existing wavelet filters and the proposed wavelet filters is made in terms of compression ratio (CR), signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR) and normalized root-mean square error (NRMSE) at different thresholding levels. The simulation result included in this paper shows increased efficacy and improved performance of the proposed filters in the field of speech signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Agbinya, J. I. (1996). Discrete wavelet transform techniques in speech processing. In IEEE Tencon digital signal processing applications proceedings (pp. 514–519). New York: IEEE.

    Chapter  Google Scholar 

  • Arif, M., & Anand, R. S. (2012). Turning point algorithm for speech signal compression. International Journal of Speech Technology. doi:10.1007/s10772-012-9151-7.

    Google Scholar 

  • Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 41, 909–996.

    Article  MathSciNet  MATH  Google Scholar 

  • Daubechies, I. (1992). Ten lectures on wavelets. CBMS-NSF.

  • Dusan, S., Flanagan, J. L., Karve, A., & Balaraman, M. (2007). Speech compression using polynomial approximation. IEEE Transactions on Audio, Speech, and Language Processing, 15(2), 387–397.

    Article  Google Scholar 

  • Fgee, E. B., Philips, W. J., & Robertson, W. (1999). Comparing audio compression using wavelet with other audio compression schemes. Proceedings IEEE Electrical and Computer Engineering, 2, 698–701.

    Google Scholar 

  • Gershikov, E., & Porat, M. (2007). On color transforms and bit allocation for optimal subband image compression. Signal Processing. Image Communication, 22, 1–18.

    Article  Google Scholar 

  • Gersho, A. (1992). Speech coding. In A. N. Ince (Ed.), Digital speech processing (pp. 73–100). Boston: Kluwer Academic.

    Chapter  Google Scholar 

  • Gersho, A. (1994). Advance in speech and audio compression. Proceedings of the IEEE, 82(6), 900–918.

    Article  Google Scholar 

  • Gibson, J. D. (2005). Speech coding methods, standards, and applications. IEEE Circuits and Systems Magazine, 5(4), 30–49.

    Article  Google Scholar 

  • Joseph, S. M. (2010). Spoken digit compression using wavelet packet. In IEEE international conference on signal and image processing (ICSIP-2010) (pp. 255–259).

    Chapter  Google Scholar 

  • Junejo, N., Ahmed, N., Unar, M. A., & Rajput, A. Q. K. (2005). Speech and image compression using discrete wavelet transform. In IEEE symposium on advances in wired and wireless communication (pp. 45–48).

    Google Scholar 

  • Kumar, A., Singh, G. K., & Anand, R. S. (2008). Near perfect reconstruction quadrature mirror filter. International Journal of Computer Science and Engineering, 2(3), 121–123.

    Google Scholar 

  • Laskar, R. H., Banerjee, K., Talukdar, F. A., & Sreenivasa Rao, K. (2012). A pitch synchronous approach to design voice conversion system using source-filter correlation. International Journal of Speech Technology, 15, 419–431.

    Article  Google Scholar 

  • Magboun, H. M., Ali, N., Osman, M. A., & Alfandi, S. A. (2010). Multimedia speech compression techniques. In IEEE international conference on computing science and information technology (ICCSIT) (Vol. 9, pp. 498–502).

    Google Scholar 

  • Mallat, S. G. (1987). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Recognition and Machine Intelligence, 11(7), 674–684.

    Article  Google Scholar 

  • Mallat, S. G. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 674–693.

    Article  MATH  Google Scholar 

  • McCauley, J., Ming, J., Stewart, D., & Hanna, P. (2005). Subband correlation and robust speech recognition. IEEE Transactions on Speech and Audio Processing, 13(5), 956–964.

    Article  Google Scholar 

  • Misiti, M., Misiti, Y., Oppenheim, G., & Poggi, J. (2000). Matlab wavelet tool box. The Math Works Inc.

  • Najih, A. M. M. A., Ramli, A. R., Ibrahim, A., & Syed, A. R. (2003). Speech compression using discreet wavelet transform. In Proceedings of 4th national conference on telecommunication technology (pp. 1–3).

    Chapter  Google Scholar 

  • Ntalampiras, S., & Fakotakis, N. (2012). Modeling the temporal evolution of acoustic parameters for speech emotion recognition. IEEE Transactions on Affective Computing, 3(1), 116–125.

    Article  Google Scholar 

  • Osman, M. A., Al, N., Magboud, H. M., & Alfandi, S. A. (2010). Speech compression using LPC and wavelet. In IEEE international conference on computer engineering and technology (ICCET) (Vol. 7, pp. 92–99).

    Google Scholar 

  • Ramchandran, K., Vetterli, M., & Herley, C. (1996). Wavelet, subband coding, and best bases. Proceedings of the IEEE, 84(4), 541–560.

    Article  Google Scholar 

  • Satt, A., & Malah, D. (1989). Design of uniform DFT filter banks optimized for subband coding of speech. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(11), 1672–1679.

    Article  Google Scholar 

  • Shahin, I. M. A. (2012). Speaker identification investigation and analysis in unbiased and biased emotional talking environments. International Journal of Speech Technology, 15, 325–334.

    Article  Google Scholar 

  • Shao, Y., & Chang, C. H. (2011). Bayesian separation with sparsity promotion in perceptual wavelet domain for speech enhancement and hybrid speech recognition. IEEE Transactions on Systems, Man and Cybernetics. Part A: System and Humans, 41(2), 284–293.

    Article  Google Scholar 

  • Shlomot, E., Cuperman, V., & Gersho, A. (1998). Combined harmonic and waveform coding of speech at low bit rates. In IEEE conference on acoustics, speech and signal processing (ICASSP98) (Vol. 2, pp. 585–588).

    Google Scholar 

  • Shlomot, E., Cuperman, V., & Gersho, A. (2001). Hybrid coding: combined harmonic and waveform coding of speech at 4 kb/s. IEEE Transactions on Speech and Audio Processing, 9(6), 632–645.

    Article  Google Scholar 

  • Vankateswaran, P., Sanyal, A., Das, S., Nandi, R., & Sanyal, S. K. (2009). An efficient time domain speech compression algorithm based on LPC and sub-band coding techniques. Journal of Communication, 4(6), 423–428.

    Google Scholar 

  • Vetterli, M., & Kovacevic, J. (1995). Wavelets and subband coding. New York: Prentice Hall.

    MATH  Google Scholar 

  • Xie, N., Dong, G., & Zhang, T. (2011). Using lossless data compression in data storage systems: not for saving space. IEEE Transactions on Computers, 60(3), 335–345.

    Article  MathSciNet  Google Scholar 

  • Young, R. M. (1980). An introduction to nonharmonic Fourier series. New York: Academic Press.

    MATH  Google Scholar 

  • Zois, E. N., & Anastassopoulos, V. (2000). Morphological waveform coding for writer identification. Pattern Recognition, 33(3), 385–398.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., Singh, G.K., Rajesh, G. et al. The optimized wavelet filters for speech compression. Int J Speech Technol 16, 171–179 (2013). https://doi.org/10.1007/s10772-012-9173-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10772-012-9173-1

Keywords

Navigation