Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Network Performance Enhancement of Multi-sink Enabled Low Power Lossy Networks in SDN Based Internet of Things

  • Published:
International Journal of Parallel Programming Aims and scope Submit manuscript

Abstract

Software Defined Network (SDN) brought revolution in the network field with the partnership of Academia and Industry. SDN bridges the gap to overcome issues of IoT deployment, optimization and better utilization of network resources. The escalation in resource congestion in Wireless Sensor Networks (WSNs) can usually lead to scalability, data computation or storage, and energy efficiency problems with only a single sink node for data acquisition. Internet of Things (IoT) has resource and energy constraints for WSN devices. Low Power and Lossy Networks (LLNs) ought to be optimized for traffic with multiple sinks. RPL routing has constraints to support this approach. However, RPL inherits the ability to offer features like Auto-Configuration, Self-Healing, Loop avoidance, and detection. These features of RPL can be transformed into the improved performance of a WSN by increasing the number of sinks with a linear increase of data transmitting nodes in the network. Further, to mitigate the escalated computing needs, edge computing has emerged as a new paradigm to resolve SDN-enabled IoT and localized computing needs. This study proposes an SDN-based solution to the interconnectivity of resource constraint LLN devices with edge computing routers in mesh and cluster topological scenario using RPL as IoT routing protocol. Performance evaluation concerning different routing metrics and objective functions: Minimum Rank with Hysteresis Function (MRHOF) and Zero (OF0) are analyzed. COOJA simulator is used for emulation of random as well as linear grid topologies for the creation of WSN static nodes. Simulation results confirm that the gradual increase of a number of nodes from 16, 32, 48, 64 and a simultaneous increase in sinks nodes as 1, 2, 3, 4 respectively in LLN network reflects the desired advantages with the stable network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Zhang, Z.-K., Cho, M.C.Y., Wang, C.-W., Hsu, C.-W., Chen, C.-K., Shieh, S.: IoT security: ongoing challenges and research opportunities. In: Book IoT Security: Ongoing Challenges and Research Opportunities, pp. 230–234. IEEE (2014)

  2. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29, 1645–1660 (2013)

    Article  Google Scholar 

  3. Vermesan, O., Friess, P., Guillemin, P., Gusmeroli, S., Sundmaeker, H., Bassi, A., et al.: Internet of things strategic research roadmap. Internet Things-Glob. Technol. Soc. Trends 1, 9–52 (2011)

    Google Scholar 

  4. Hui, J., Vasseur, J.: RPL: IPv6 routing protocol for low-power and lossy networks. Internet Requests for Comment, RFC Editor, Fremont, CA, USA, Tech. Rep, vol. 6550 (2012)

  5. Gungor, V.C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., et al.: Smart grid and smart homes: key players and pilot projects. IEEE Ind. Electron. Mag. 6, 18–34 (2012)

    Article  Google Scholar 

  6. Carels, D., Derdaele, N., De Poorter, E., Vandenberghe, W., Moerman, I., Demeester, P.: Support of multiple sinks via a virtual root for the RPL routing protocol. EURASIP J. Wirel. Commun. Netw. 2014, 91 (2014)

    Article  Google Scholar 

  7. de Oliveira, B.T., Alves, R.C.A., Margi, C.B.: Software-defined wireless sensor networks and internet of things standardization synergism. In: 2015 IEEE Conference on Standards for Communications and Networking (CSCN), pp. 60–65 (2015)

  8. Twayej, W., Al-Raweshidy, H., Khan, M., El-Geder, S.: Energy-efficient M2 M routing protocol based on Tiny-SDCWN with 6LoWPAN. In: 8th, Computer Science and Electronic Engineering (CEEC), pp. 198–203 (2016)

  9. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17, 2347–2376 (2015)

    Article  Google Scholar 

  10. Bormann, C., Ersue, M., Keranen, A.: Terminology for constrained-node networks. pp. 1721–2070 (2014)

  11. Palattella, M., Grieco, L., Watteyne, T.: Using IEEE 802.15. 4e time-slotted channel hopping (TSCH) in the internet of things (IoT): problem statement (2015)

  12. Ersue, M., Romascanu, D., Schoenwaelder, J., Herberg, U.: Management of networks with constrained devices: problem statement and requirements. pp. 1721–2070 (2015)

  13. Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., Mccann, J., Leung, K.: A survey on the ietf protocol suite for the internet of things: standards, challenges, and opportunities. IEEE Wirel. Commun. 20, 91–98 (2013)

    Article  Google Scholar 

  14. Kushalnagar, N., Montenegro, G., Schumacher, C.: IPv6 over low-power wireless personal area networks (6LoWPANs): overview, assumptions, problem statement, and goals. pp. 1721–2070 (2007)

  15. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for smart cities. IEEE Internet Things J. 1, 22–32 (2014)

    Article  Google Scholar 

  16. Villaverde, B.C., Pesch, D., Alberola, R.D.P., Fedor, S., Boubekeur, M.: Constrained application protocol ubiquitous computing (IMIS). In: Sixth International Conference on for Low Power Embedded Networks: A Survey, in Innovative. pp. 702–707 (2012)

  17. Mulligan, G.: The 6LoWPAN architecture. In: Proceedings of the 4th Workshop on Embedded Networked Sensors, pp. 78–82 (2007)

  18. Oliveira, L.M., De Sousa, A.F., Rodrigues, J.J.: Routing and mobility approaches in IPv6 over LoWPAN mesh networks. Int. J. Commun Syst 24, 1445–1466 (2011)

    Article  Google Scholar 

  19. Tripathi, J., de Oliveira, J.C., Vasseur, J.-P.: A performance evaluation study of RPL: routing protocol for low power and lossy networks. In: 44th Annual Conference on Information Sciences and Systems (CISS), pp. 1–6 (2010)

  20. Kreutz, D., Ramos, F.M., Verissimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE 103, 14–76 (2015)

    Article  Google Scholar 

  21. Sezer, S., Scott-Hayward, S., Chouhan, P.K., Fraser, B., Lake, D., Finnegan, J., et al.: Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Commun. Mag. 51, 36–43 (2013)

    Article  Google Scholar 

  22. Gomez, C., Boix, A., Paradells, J.: Impact of LQI-based routing metrics on the performance of a one-to-one routing protocol for IEEE 802.15. 4 multihop networks. EURASIP J. Wirel. Commun. Netw. 2010, 205407 (2010)

    Article  Google Scholar 

  23. Chen, Y., Chanet, J.-P., Hou, K.M., Shi, H.L.: Extending the RPL routing protocol to agricultural low power and lossy networks (A-LLNs). In. J. Agric. Environ. Inf. Syst. (IJAEIS) 4, 25–47 (2013)

    Article  Google Scholar 

  24. Chen, Y., Chanet, J.-P., Hou, K.-M., Shi, H., De Sousa, G.: A scalable context-aware objective function (SCAOF) of routing protocol for agricultural low-power and lossy networks (RPAL). Sensors 15, 19507–19540 (2015)

    Article  Google Scholar 

  25. Ko, J., Terzis, A., Dawson-Haggerty, S., Culler, D.E., Hui, J.W., Levis, P.: Connecting low-power and lossy networks to the internet. IEEE Commun. Mag. 49, 96–101 (2011)

    Google Scholar 

  26. Palattella, M.R., Accettura, N., Vilajosana, X., Watteyne, T., Grieco, L.A., Boggia, G., et al.: Standardized protocol stack for the internet of (important) things. IEEE Commun. Surv. Tutor. 15, 1389–1406 (2013)

    Article  Google Scholar 

  27. Fortz, B., Thorup, M.: Optimizing OSPF/IS-IS weights in a changing world. IEEE J. Sel. Areas Commun. 20, 756–767 (2002)

    Article  Google Scholar 

  28. Fortz, B., Thorup, M.: Robust optimization of OSPF/IS-IS weights. In: Proc. INOC. vol. 20, pp. 225–230, 756–767 (2003)

  29. Grilo, A.M., Heidrich, M.: Routing metrics for cache-based reliable transport in wireless sensor networks. EURASIP J. Wirel. Commun. Netw. 2013, 139 (2013)

    Article  Google Scholar 

  30. Jabbar, S., Naseer, K., Gohar, M., Rho, S., Chang, H.: Trust model at service layer of cloud computing for educational institutes. J. Supercomput. 72, 58–83 (2016)

    Article  Google Scholar 

  31. Ahmad, A., Paul, A., Khan, M., Jabbar, S., Rathore, M.M.U., Chilamkurti, N., et al.: Energy efficient hierarchical resource management for mobile cloud computing. IEEE Trans. Sustain. Comput. 2, 100–112 (2017)

    Article  Google Scholar 

  32. Jabbar, S., Minhas, A.A., Imran, M., Khalid, S., Saleem, K.: Energy efficient strategy for throughput improvement in wireless sensor networks. Sensors 15, 2473–2495 (2015)

    Article  Google Scholar 

  33. Zhao, Z., Huangfu, W., Sun, L., Shi, Z., Gan, W.: An open conformance test system towards the standardization of wireless sensor networks. Int. J. Distrib. Sens. Netw. 8, 1–15 (2012)

    Google Scholar 

  34. Bressan, N., Bazzaco, L., Bui, N., Casari, P., Vangelista, L., Zorzi, M.: The deployment of a smart monitoring system using wireless sensor and actuator networks. In: First IEEE International Conference on Smart Grid Communications (SmartGridComm). pp. 49–54 (2010)

  35. Deepalakshmi, P., Radhakrishnan, S.: An ant colony-based multi objective quality of service routing for mobile ad hoc networks. EURASIP J. Wirel. Commun. Netw. 2011, 153 (2011)

    Article  Google Scholar 

  36. Hui, J.W., Vasseur, J.-P.: Estimated transmission overhead (ETO) metrics for variable data rate communication links. Google Patents (2014)

  37. Shen, G., Zetik, R., Hirsch, O., Thomä, R.S.: Range-based localization for UWB sensor networks in realistic environments. EURASIP J. Wirel. Commun. Netw. 2010, 476598 (2009)

    Article  Google Scholar 

  38. Pradeska, N., Najib, W., Kusumawardani, S.S.: Performance analysis of objective function MRHOF and OF0 in routing protocol RPL IPV6 over low power wireless personal area networks (6LoWPAN). In: 8th International Conference on Information Technology and Electrical Engineering (ICITEE). pp. 1–6 (2016)

  39. Iwanicki, K.: RNFD: routing-layer detection of DODAG (root) node failures in low-power wireless networks. In: Proceedings of the 15th International Conference on Information Processing in Sensor Networks. IEEE Press, p. 13 (2016)

  40. Ko, J.G., Dawson-Haggerty, S., Gnawali, O., Culler, D., Terzis, A:. Evaluating the performance of RPL and 6LoWPAN in TinyOS. In: Workshop on Extending the Internet to Low Power and Lossy Networks (IP + SN), vol. 80, pp. 85–90 (2011)

  41. Guo, J., Liu, X., Bhatti, G., Orlik, P., Parsons, K.: Load balanced routing for low power and lossy networks. Google Patents (2013)

  42. Iova, O., Theoleyre, F., Noel, T.: Using multiparent routing in RPL to increase the stability and the lifetime of the network. Ad Hoc Netw. 29, 45–62 (2015)

    Article  Google Scholar 

  43. Ha, M., Kwon, K., Kim, D., Kong, P-Y.: Dynamic and distributed load balancing scheme in multi-gateway based 6LoWPAN. In: Internet of Things (iThings), 2014 IEEE International Conference on, and Green Computing and Communications (GreenCom), IEEE and Cyber, Physical and Social Computing (CPSCom), IEEE, pp. 87–94 (2014)

  44. Kim, H.-S., Ko, J., Culler, D.E., Paek, J.: Challenging the IPv6 routing protocol for low-power and lossy networks (RPL): a survey. IEEE Commun. Surv. Tutor. 19, 2502 (2017)

    Article  Google Scholar 

  45. Khan, M.M., Lodhi, M.A., Rehman, A., Khan, A., Hussain, F.B.: Sink-to-sink coordination framework using RPL: routing protocol for low power and lossy networks. J. Sens. 2016, 11 (2016)

    Google Scholar 

  46. Lodhi, M.A., Rehman, A., Khan, M.M., Hussain, F.B.: Transient Multipath routing protocol for low power and lossy networks. KSII Trans. Internet Inf. Syst. (TIIS) 11, 2002–2019 (2017)

    Google Scholar 

  47. Deru, L., Dawans, S., Ocaña, M., Quoitin, B., Bonaventure, O.: Redundant border routers for mission- critical 6lowpan networks. In: Real-World Wireless Sensor Networks, pp. 195–203. Springer, Berlin (2014)

  48. Jabbar, S., Minhas, A.A., Rashid, T., Rho, S.: Heuristic approach for stagnation free energy aware routing in wireless sensor networks. Adhoc Sens. Wirel. Netw. 31, 21–45 (2016)

    Google Scholar 

  49. Alishahi, M., Moghaddam, M.H.Y., Pourreza, H.R.: Multi-class routing protocol using virtualization and SDN-enabled architecture for smart grid. Peer-to-Peer Netw. Appl. 11, 1–17 (2016)

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by University of Engineering and Technology Taxila, Pakistan through the Directorate of Advanced Studies, Research and Technological Development (ASR&TD) research grant, for which we indebted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohail Jabbar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabbir, G., Akram, A., Iqbal, M.M. et al. Network Performance Enhancement of Multi-sink Enabled Low Power Lossy Networks in SDN Based Internet of Things. Int J Parallel Prog 48, 367–398 (2020). https://doi.org/10.1007/s10766-018-0620-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10766-018-0620-8

Keywords

Navigation