Abstract
When resolving many-objective problems, multi-objective optimization algorithms encounter several difficulties degrading their performances. These difficulties may concern the exponential execution time, the effectiveness of the mutation and recombination operators or finding the tradeoff between diversity and convergence. In this paper, the issue of 3D redeploying in indoor the connected objects (or nodes) in the Internet of Things collection networks (formerly known as wireless sensor nodes) is investigated. The aim is to determine the ideal locations of the objects to be added to enhance an initial deployment while satisfying antagonist objectives and constraints. In this regard, a first proposed contribution aim to introduce an hybrid model that includes many-objective optimization algorithms relying on decomposition (MOEA/D, MOEA/DD) and reference points (Two_Arch2, NSGA-III) while using two strategies for introducing the preferences (PI-EMO-PC) and the dimensionality reduction (MVU-PCA). This hybridization aims to combine the algorithms advantages for resolving the many-objective issues. The second contribution concerns prototyping and deploying real connected objects which allows assessing the performance of the proposed hybrid scheme on a real world environment. The obtained experimental and numerical results show the efficiency of the suggested hybridization scheme against the original algorithms.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
Color should be used for Fig. 7 in print.
References
Argany, M., Karimipour, F., Mafi, F., Afghantoloee, A.: Optimization of wireless sensor networks deployment based on probabilistic sensing models in a complex environment. J. Sens. Actuator Netw. 7(2), 20 (2018). https://doi.org/10.3390/jsan7020020
Arduino platform: https://www.arduino.cc/en/main/software (2018). Accessed 5 Jan 2018
Bechikh, S., Ben Said, L., Ghédira, K.: Searching for knee regions of the Pareto front using mobile reference points. Soft Comput. 15(9), 1807–1823 (2011). https://doi.org/10.1007/s00500-011-0694-3
Branke, J., Deb, K., Miettinen, K., Slowinski, R.: Multiobjective Optimization: Interactive and Evolutionary Approaches. Springer, Berlin (2008)
Cheng, X., Du, D.Z., Wang, L., Xu, B.: Relay sensor placement in wireless sensor networks. ACM/Springer J. Wirel. Netw. 14(3), 347–355 (2008). https://doi.org/10.1007/s11276-006-0724-8
Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference point- based non-dominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014). https://doi.org/10.1109/TEVC.2013.2281535
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. Evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Advanced Information and Knowledge Processing, pp. 105–145. Springer, London (2005)
Deb, K., Chaudhuri, S., Miettinen, K. Towards estimating nadir objective vector using evolutionary approaches. In: 8th Genetic and Evolutionary Computation Conference (GECCO), pp. 643–650 (2006). https://doi.org/10.1145/1143997.1144113
Domingo-Perez, F., Lazaro-Galilea, J.L., Bravo, I., Gardel, A., Rodriguez, D.: Optimization of the coverage and accuracy of an indoor positioning system with a variable number of sensors. Sensors (Basel, Switzerland) 16(6), 934 (2016). https://doi.org/10.3390/s16060934
Drechsler, N., Sülflow, A., Drechsler, R.: Incorporating user preferences in many-objective optimization using relation e-preferred. Nat. Comput. 14, 469 (2015). https://doi.org/10.1007/s11047-014-9422-0
Elhabyan, R., Shi, W., St-Hilaire, M.: Coverage protocols for wireless sensor networks: review and future directions. J. Commun. Netw. 21(1), 45–60 (2019). https://doi.org/10.1109/JCN.2019.000005
Fonseca, C.M., Paquete, L., López-Ibáñez, M.: An improved dimension—sweep algorithm for the hypervolume indicator. In: Congress on Evolutionary Computation, pp. 1157–1163. IEEE Press, Piscataway (2006). https://doi.org/10.1109/CEC.2006.1688440
Gong, D., Wang, G., Sun, X.: Set-based genetic algorithms for solving many-objective optimization problems. In: 13th UK Workshop on Computational Intelligence (UKCI), Guildford, pp. 96–103 (2013). https://doi.org/10.1109/UKCI.2013.6651293
Guo, J., Jafarkhani, H.: Movement-efficient sensor deployment in wireless sensor networks with limited communication range. IEEE Trans. Wirel. Commun. 18(7), 3469–3484 (2019). https://doi.org/10.1109/TWC.2019.2914199
Huang, B., Liu, W., Wang, T., Li, X., Song, H., Liu, A.: Deployment optimization of data centers in vehicular networks. IEEE Access 7, 20644–20663 (2019a). https://doi.org/10.1109/ACCESS.2019.2897615
Huang, X., Cheng, S., Cao, K., Cong, P., Wei, T., Hu, S.: A survey of deployment solutions and optimization strategies for hybrid SDN networks. IEEE Commun. Surv. Tutor. 21(2), 1483–1507 (2019b). https://doi.org/10.1109/COMST.2018.2871061
Ishibuchi, H., Akedo, N., Nojima, Y.: EMO algorithms on correlated many-objective problems with different correlation strength. World Automation Congress 2012, Puerto Vallarta, Mexico, pp. 1–6 (2012)
IoTLab platform: https://www.iot-lab.info (2019). Accessed 22 June 2019
Ko, A.H.R., Gagnon, F.: Process of 3D wireless decentralized sensor deployment using parsing crossover scheme. Appl. Comput. Inform. 11(2), 89–101 (2015). https://doi.org/10.1016/j.aci.2014.11.001
Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 19(5), 694–716 (2015). https://doi.org/10.1109/TEVC.2014.2373386
Liu, X., Qui, T., Zhou, X., Wang, T., Yang, L., Chang, V.: Latency-aware anchor-point deployment for disconnected sensor networks with mobile sinks. IEEE Trans. Ind. Inf. (2019). https://doi.org/10.1109/TII.2019.2916300
Luo, X., Li, X., Wang, J., Guan, X.: Potential-game based optimally rigid topology control in wireless sensor networks. IEEE Access 6, 16599–16609 (2018). https://doi.org/10.1109/ACCESS.2018.2814079
Mitra, P., Murthy, C.A., Pal, S.K.: Unsupervised feature selection using feature similarity. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 301–312 (2002). https://doi.org/10.1109/34.990133
Mnasri, S., Nasri, N., Van Den Bossche, A., Val, T.: The 3D deployment multi-objective problem in mobile WSN: optimizing coverage and localization. Int. Res. J Innov. Eng. (IRJIE) 1(5), 1–14 (2015)
Mnasri, S., Nasri, N., Van Den Bossche, A., Val, T.: A hybrid ant-genetic algorithm to solve a real deployment problem: a case study with experimental validation. In: Puliafito, A., Bruneo, D., Distefano, S., Longo, F. (eds.) Ad hoc, Mobile, and Wireless Networks. ADHOC-NOW 2017. Lecture Notes in Computer Science, vol. 10517. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67910-5_30
Mnasri, S., Nasri, N., Van Den Bossche, A., Val, T.: 3D indoor redeployment in IoT collection networks: a real prototyping using a hybrid PI-NSGA-III-VF. In: The 14th International Wireless Communications and Mobile Computing Conference IWCMC 2018, pp. 780–785 (2018)
Qu, B.Y., Suganthan, P.N., Liang, J.J.: Differential evolution with neighborhood mutation for multimodal optimization. IEEE Trans. Evol. Comput. 16(5), 601–614 (2012). https://doi.org/10.1109/TEVC.2011.2161873
Rostami, S.: Preference focussed many-objective evolutionary computation. Ph.D. dissertation (chapter 2), School of Engineering, Manchester Metropolitan University, Manchester, UK, M15 6HB (2014)
Saul, L.K., Weinberger, K.Q., Ham, J.H., Sha, F., Lee, D.D.: Spectral methods for dimensionality reduction. In: Schoelkopf, O.C.B., Zien, A. (eds.) Semisupervised Learning. MIT Press, Cambridge (2006)
Savkin, A.V., Huang, H.: A method for optimized deployment of a network of surveillance aerial drones. IEEE Syst. J. (2019). https://doi.org/10.1109/jsyst.2019.2910080
Saxena, D.K., Duro, J.A., Tiwari, A., Deb, K., Zhang, Q.: Objective reduction in many-objective optimization: linear and nonlinear algorithms. IEEE Trans. Evol. Comput. 17(1), 77–99 (2013). https://doi.org/10.1109/TEVC.2012.2185847
Shlens, J.: A tutorial on principal component analysis. Center for Neural Science, New York University, Tech. Rep (2009)
Sinha, A., Korhonen, P., Wallenius, J., Deb, K.: An improved progressively interactive evolutionary multi-objective optimization algorithm with a fixed budget of decision maker calls. Eur. J. Oper. Res. 233(3), 674–688 (2014). https://doi.org/10.1016/j.ejor.2013.08.046
Sinha, A., Saxena, D.K., Deb, K., Tiwari, A.: Using objective reduction and interactive procedure to handle many-objective optimization problems. Appl. Soft Comput. 13(1), 415–427 (2013). https://doi.org/10.1016/j.asoc.2012.08.030
Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization. IEEE Comput. Intell. Mag. 12(4), 73–87 (2017). https://doi.org/10.1109/MCI.2017.2742868
Tsang, Y.P., Choy, K.L., Wu, C.H., Ho, G.T.S.: Multi-objective mapping method for 3D environmental sensor network deployment. IEEE Commun. Lett. 23(7), 1231–1235 (2019). https://doi.org/10.1109/LCOMM.2019.2914440
Van den Bossche, A., Dalce, R., Val, T.: OpenWiNo: an open hardware and software framework for fast-prototyping in the IoT. In: 23rd International Conference on Telecommunications, Thessaloniki, Greece, pp. 1–6 (2016). https://doi.org/10.1109/ICT.2016.7500490
Wang, H., Jiao, L., Yao, X.: Two_Arch2: an improved two-archive algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(4), 524–541 (2015). https://doi.org/10.1109/TEVC.2014.2350987
Weinberger, K.Q., Saul, L.K.: Unsupervised learning of image manifolds by semidefinite programming. Int. J. Comput. Vis. 70(1), 77–90 (2006). https://doi.org/10.1109/CVPR.2004.1315272
Xu, H., Lai, Z., Liang, H.: A novel mathematical morphology based antenna deployment scheme for indoor wireless coverage. In: IEEE 80th Vehicular Technology Conference (VTC Fall), pp. 1–5 (2014). https://doi.org/10.1109/VTCFall.2014.6965828
Yuan, Y., Xu, H., Wang, B., Zhang, B., Yao, X.: Balancing convergence and diversity in decomposition-based many-objective optimizers. IEEE Trans. Evol. Comput. 20(2), 180–198 (2016). https://doi.org/10.1109/TEVC.2015.2443001
Zhang, X., Tian, Y., Jin, Y.: A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(6), 761–776 (2015). https://doi.org/10.1109/TEVC.2014.2378512
Zhang, H., Liu, Y., Zhou, J.: Balanced-evolution genetic algorithm for combinatorial optimization problems: the general outline and implementation of balanced evolution strategy based on linear diversity index. Nat. Comput. (2018). https://doi.org/10.1007/s11047-018-9670-5
Funding
None.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Mnasri, S., Nasri, N., Alrashidi, M. et al. IoT networks 3D deployment using hybrid many-objective optimization algorithms. J Heuristics 26, 663–709 (2020). https://doi.org/10.1007/s10732-020-09445-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10732-020-09445-x