Abstract
In this paper we introduce a new method for generating heuristic solutions to binary optimization problems. We develop a technique based on binary decision diagrams. We use these structures to provide an under-approximation to the set of feasible solutions. We show that the proposed algorithm delivers comparable solutions to a state-of-the-art general-purpose optimization solver on randomly generated set covering and set packing problems.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aarts, E., Lenstra, J.K.: Local Search in Combinatorial Optimization. Wiley, New York (1997)
Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. C–27, 509–516 (1978)
Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessière, C. (ed.) Principles and Practice of Constraint Programming (CP 2007). Lecture Notes in Computer Science, vol. 4741, pp 118–132. Springer, New York (2007)
Becker, B., Behle, M., Eisenbrand, F., Wimmer, R.: BDDs in a branch and cut framework. In: Nikoletseas, S. (ed.) Proceedings of the 4th International Workshop on Efficient and Experimental Algorithms (WEA 05). Lecture Notes in Computer Science, vol. 3503, pp 452–463. Springer, New York (2005)
Behle, M., Eisenbrand, F.: 0/1 vertex and facet enumeration with BDDs. In: Proceedings of the Workshop on Algorithm Engineering and Experiments (ALENEX), pp 158–165. SIAM, Philadelphia (2007)
Bergman, D., van Hoeve, W.J., Hooker, J.N.: Manipulating MDD relaxations for combinatorial optimization. In: Achterberg, T., Beck, J. (eds.) CPAIOR. Lecture Notes in Computer Science, vol. 6697, pp 20–35. Springer, New York (2011)
Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Variable ordering for the application of BDDs to the maximum independent set problem. In: Beldiceanu, N., Jussien, N., Pinson, E. (eds.) 9th International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR’12). Lectures Notes in Computer Science, vol. 7298, pp 34–49. Springer, Nantes (2012)
Berthold, T.: Primal heuristics for mixed integer programs. Master’s thesis, Zuze Institute, Berlin (2006)
Bertsimas, D., Iancu, D.A., Katz, D.: A new local search algorithm for binary optimization. INFORMS J. Comput. 25(2), 208–221 (2013)
Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. C–35, 677–691 (1986)
Caprara, A., Fischetti, M., Toth, P.: Algorithms for the set covering problem. Ann. Oper. Res. 98, 2000 (1998)
Corso, G.M.D., Manzini, G.: Finding exact solutions to the bandwidth minimization problem. Computing 62(3), 189–203 (1999)
Eckstein, J., Nediak, M.: Pivot, cut, and dive: a heuristic for 0–1 mixed integer programming. J. Heuristics 13(5), 471–503 (2007)
Feige, U.: Approximating the bandwidth via volume respecting embeddings. J. Comput. Syst. Sci. 60(3), 510–539 (2000)
Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Math. Program 104(1), 91–104 (2005)
Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J. Math. 15, 835–855 (1965)
Glover, F., Laguna, M.: General purpose heuristics for integer programming—part I. J. Heuristics 2(4), 343–358 (1997a)
Glover, F., Laguna, M.: General purpose heuristics for integer programming—part II. J. Heuristics 3(2), 161–179 (1997b)
Grosso, A., Locatelli, M., Pullan, W.: Simple ingredients leading to very efficient heuristics for the maximum clique problem. J. Heuristics 14(6), 587–612 (2008)
Gurari, E.M., Sudborough, I.H.: Improved dynamic programming algorithms for bandwidth minimization and the mincut linear arrangement problem. J. Algorithms 5, 531–546 (1984)
Hadzic, T., Hooker, J.N.: Postoptimality analysis for integer programming using binary decision diagrams. In: Presented at GICOLAG Workshop (Global Optimization: Integrating Convexity, Optimization, Logic Programming, and Computational Algebraic Geometry). Technical Report. Carnegie Mellon University, Vienna (2006)
Hadzic, T., Hooker, J.N.: Cost-bounded binary decision diagrams for 0–1 programming. In: Loute, E., Wolsey, L. (eds.) Proceedings of the International Workshop on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR 2007). Lecture Notes in Computer Science, vol. 4510, pp 84–98. Springer, New York (2007)
Hadzic, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate compilation of constraints into multivalued decision diagrams. In: Stuckey, P.J. (ed.) Principles and Practice of Constraint Programming (CP 2008). Lecture Notes in Computer Science, vol. 5202, pp 448–462. Springer, New York (2008)
Hoda, S., Hoeve, W.J., Hooker, J.N.: A systematic approach to MDD-based constraint programming. In: Proceedings of the 16th International Conference on Principles and Practices of Constraint Programming. Lecture Notes in Computer Science, vol. 6308, pp 266–280. Springer, New York (2010)
Hu, A.J.: Techniques for efficient formal verification using binary decision diagrams. Thesis CS-TR-95-1561, Department of Computer Science, Stanford University (1995)
Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell Syst. Tech. J. 38, 985–999 (1959)
Martí, R., Laguna, M., Glover, F., Campos, V.: Reducing the bandwidth of a sparse matrix with tabu search. Eur. J. Oper. Res. 135(2), 450–459 (2001)
Martí, R., Campos, V., Piñana, E.: A branch and bound algorithm for the matrix bandwidth minimization. Eur. J. Oper. Res. 186(2), 513–528 (2008)
Piñana, E., Plana, I., Campos, V., Martí, R.: GRASP and path relinking for the matrix bandwidth minimization. Eur. J. Oper. Res. 153(1), 200–210 (2004)
Pullan, W., Mascia, F., Brunato, M.: Cooperating local search for the maximum clique problem. J. Heuristics 17(2), 181–199 (2011)
Saxe, J.: Dynamic programming algorithms for recognizing small-bandwidth graphs in polynomial time. SIAM J. Algebraic Discrete Methods 1, 363–369 (1980)
Wegener, I.: Branching programs and binary decision diagrams: theory and applications. In: SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics, Philadelphia (2000)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bergman, D., Cire, A.A., van Hoeve, WJ. et al. BDD-based heuristics for binary optimization. J Heuristics 20, 211–234 (2014). https://doi.org/10.1007/s10732-014-9238-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10732-014-9238-1