Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Context-Aware Multi-User Offloading in Mobile Edge Computing: a Federated Learning-Based Approach

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

Mobile edge computing (MEC) provides an effective solution to help the Internet of Things (IoT) devices with delay-sensitive and computation-intensive tasks by offering computing capabilities in the proximity of mobile device users. Most of the existing studies ignore context information of the application, requests, sensors, resources, and network. However, in practice, context information has a significant impact on offloading decisions. In this paper, we consider context-aware offloading in MEC with multi-user. The contexts are collected using autonomous management as the MAPE loop in all offloading processes. Also, federated learning (FL)-based offloading is presented. Our learning method in mobile devices (MDs) is deep reinforcement learning (DRL). FL helps us to use distributed capabilities of MEC with updated weights between MDs and edge devices (Eds). The simulation results indicate our method is superior to local computing, offload, and FL without considering context-aware algorithms in terms of energy consumption, execution cost, network usage, delay, and fairness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Paknejad, P., Khorsand, R., Ramezanpour, M.: Chaotic improved PICEA-g-based multi-objective optimization for workflow scheduling in cloud environment. Futur. Gener. Comput. Syst. 117, 12–28 (2021)

    Article  Google Scholar 

  2. Shahidinejad, A., Ghobaei-Arani, M., Masdari, M.: Resource provisioning using workload clustering in cloud computing environment: a hybrid approach. Clust. Comput. 24(1), 319–342 (2021)

    Article  Google Scholar 

  3. Shahidinejad, A., Ghobaei-Arani, M.: Joint computation offloading and resource provisioning for edge-cloud computing environment: a machine learning-based approach. Software: Practice and Experience. 50(12), 2212–2230 (2020)

    Google Scholar 

  4. M. Ayoubi, M. Ramezanpour, and R. Khorsand, "An Autonomous IoT Service Placement Methodology in Fog Computing," Software: Practice and Experience, 2020

  5. Wang, F., Xu, J., Cui, S.: Optimal energy allocation and task offloading policy for wireless powered mobile edge computing systems. IEEE Trans. Wirel. Commun. 19(4), 2443–2459 (2020)

    Article  Google Scholar 

  6. Hu, Y.C., Patel, M., Sabella, D., Sprecher, N., Young, V.: Mobile edge computing—a key technology towards 5G. ETSI white paper. 11(11), 1–16 (2015)

    Google Scholar 

  7. Farahbakhsh, F., Shahidinejad, A., Ghobaei-Arani, M.: Context-aware computation offloading for mobile edge computing. J. Ambient. Intell. Humaniz. Comput. 1–13 (2021)

  8. Aral, A., Brandic, I., Uriarte, R.B., De Nicola, R., Scoca, V.: Addressing application latency requirements through edge scheduling. Journal of Grid Computing. 17(4), 677–698 (2019)

    Article  Google Scholar 

  9. Farahbakhsh, F., Shahidinejad, A., Ghobaei-Arani, M.: Multiuser context-aware computation offloading in mobile edge computing based on Bayesian learning automata. Transactions on Emerging Telecommunications Technologies. 32(1), e4127 (2021)

    Article  Google Scholar 

  10. Liang, Z., Liu, Y., Lok, T.-M., Huang, K.: Multiuser computation offloading and downloading for edge computing with virtualization. IEEE Trans. Wirel. Commun. 18(9), 4298–4311 (2019)

    Article  Google Scholar 

  11. Luo, C., Goncalves, J., Velloso, E., Kostakos, V.: A survey of context simulation for testing mobile context-aware applications. ACM Computing Surveys (CSUR). 53(1), 1–39 (2020)

    Article  Google Scholar 

  12. Shakarami, A., Shahidinejad, A., Ghobaei-Arani, M.: An autonomous computation offloading strategy in Mobile edge Computing: a deep learning-based hybrid approach. J. Netw. Comput. Appl. 178, 102974 (2021)

    Article  Google Scholar 

  13. Lim, W.Y.B., Luong, N.C., Hoang, D.T., Jiao, Y., Liang, Y.C., Yang, Q., Niyato, D., Miao, C.: Federated learning in mobile edge networks: a comprehensive survey. IEEE Communications Surveys & Tutorials. 22(3), 2031–2063 (2020)

    Article  Google Scholar 

  14. Peng, H., Wen, W.-S., Tseng, M.-L., Li, L.-L.: Joint optimization method for task scheduling time and energy consumption in mobile cloud computing environment. Appl. Soft Comput. 80, 534–545 (2019)

    Article  Google Scholar 

  15. Yang, X., Fei, Z., Zheng, J., Zhang, N., Anpalagan, A.: Joint multi-user computation offloading and data caching for hybrid mobile cloud/edge computing. IEEE Trans. Veh. Technol. 68(11), 11018–11030 (2019)

    Article  Google Scholar 

  16. Z.-Z. Liu, Q. Z. Sheng, X. Xu, D. Chu, and W. E. Zhang, "Context-aware and adaptive QoS prediction for mobile edge computing services," IEEE Trans. Serv. Comput., 2019

  17. Tran, D.H., Tran, N.H., Pham, C., Kazmi, S.A., Huh, E.-N., Hong, C.S.: OaaS: offload as a service in fog networks. Computing. 99(11), 1081–1104 (2017)

    Article  MathSciNet  Google Scholar 

  18. A. Shakarami, M. Ghobaei-Arani, and A. Shahidinejad, "A survey on the computation offloading approaches in mobile edge computing: A machine learning-based perspective," Computer Networks, p. 107496, 2020

  19. Z. Chang, Z. Zhou, T. Ristaniemi, and Z. Niu, "Energy efficient optimization for computation offloading in fog computing system," in GLOBECOM 2017–2017 IEEE Global Communications Conference, 2017, pp. 1–6: IEEE

  20. Peng, K., et al.: An energy-and cost-aware computation offloading method for workflow applications in mobile edge computing. EURASIP J. Wirel. Commun. Netw. 2019(1), 1–15 (2019)

    Article  Google Scholar 

  21. Liu, L., Chang, Z., Guo, X., Mao, S., Ristaniemi, T.: Multiobjective optimization for computation offloading in fog computing. IEEE Internet Things J. 5(1), 283–294 (2017)

    Article  Google Scholar 

  22. Jararweh, Y., Al-Ayyoub, M., Al-Quraan, M., Lo’ai, A.T., Benkhelifa, E.: Delay-aware power optimization model for mobile edge computing systems. Pers. Ubiquit. Comput. 21(6), 1067–1077 (2017)

    Article  Google Scholar 

  23. L. Huang, X. Feng, L. Zhang, L. Qian, and Y. Wu, "Multi-server multi-user multi-task computation offloading for mobile edge computing networks," Sensors, vol. 19, no. 6, p. 1446, 2019

  24. Salehan, A., Deldari, H., Abrishami, S.: An online context-aware mechanism for computation offloading in ubiquitous and mobile cloud environments. J. Supercomput. 75(7), 3769–3809 (2019)

    Article  Google Scholar 

  25. J. Cho, K. Sundaresan, R. Mahindra, J. Van der Merwe, and S. Rangarajan, "ACACIA: context-aware edge computing for continuous interactive applications over mobile networks," in Proceedings of the 12th International on Conference on emerging Networking EXperiments and Technologies, 2016, pp. 375–389

  26. Chen, X., Chen, S., Zeng, X., Zheng, X., Zhang, Y., Rong, C.: Framework for context-aware computation offloading in mobile cloud computing. Journal of Cloud Computing. 6(1), 1–17 (2017)

    Article  Google Scholar 

  27. Ghasemi-Falavarjani, S., Nematbakhsh, M., Ghahfarokhi, B.S.: Context-aware multi-objective resource allocation in mobile cloud. Computers & Electrical Engineering. 44, 218–240 (2015)

    Article  Google Scholar 

  28. Nawrocki, P., Sniezynski, B.: Adaptive context-aware energy optimization for services on Mobile devices with use of machine learning. Wirel. Pers. Commun. 115(3), 1839–1867 (2020)

    Article  Google Scholar 

  29. R. Roostaei and Z. Movahedi, "Mobility-Aware and Fault-Tolerant Computation Offloading for Mobile Cloud Computing," 2018

  30. S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, "Thinkair: Dynamic resource allocation and parallel execution in the cloud for mobile code offloading," in 2012 Proceedings IEEE Infocom, 2012, pp. 945–953: IEEE

  31. T.-Y. Lin, T.-A. Lin, C.-H. Hsu, and C.-T. King, "Context-aware decision engine for mobile cloud offloading," in 2013 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), 2013, pp. 111–116: IEEE

  32. Shakarami, A., Shahidinejad, A., Ghobaei-Arani, M.: A review on the computation offloading approaches in mobile edge computing: a g ame-theoretic perspective. Software: Practice and Experience. 50(9), 1719–1759 (2020)

    Google Scholar 

  33. Ren, J., Wang, H., Hou, T., Zheng, S., Tang, C.: Federated learning-based computation offloading optimization in edge computing-supported internet of things. IEEE Access. 7, 69194–69201 (2019)

    Article  Google Scholar 

  34. Yang, K., Jiang, T., Shi, Y., Ding, Z.: Federated learning via over-the-air computation. IEEE Trans. Wirel. Commun. 19(3), 2022–2035 (2020)

    Article  Google Scholar 

  35. Wang, X., Han, Y., Wang, C., Zhao, Q., Chen, X., Chen, M.: In-edge ai: Intelligentizing mobile edge computing, caching and communication by federated learning. IEEE Netw. 33(5), 156–165 (2019)

    Article  Google Scholar 

  36. Shen, S., Han, Y., Wang, X., Wang, Y.: Computation offloading with multiple agents in edge-computing–supported IoT. ACM Transactions on Sensor Networks (TOSN). 16(1), 1–27 (2019)

    Article  Google Scholar 

  37. Boukerche, A., Guan, S., Grande, R.E.D.: Sustainable offloading in mobile cloud computing: algorithmic design and implementation. ACM Computing Surveys (CSUR). 52(1), 1–37 (2019)

    Article  Google Scholar 

  38. Nawrocki, P., Sniezynski, B.: Autonomous context-based service optimization in mobile cloud computing. Journal of Grid computing. 15(3), 343–356 (2017)

    Article  Google Scholar 

  39. Baraki, H., Jahl, A., Jakob, S., Schwarzbach, C., Fax, M., Geihs, K.: Optimizing applications for mobile cloud computing through MOCCAA. Journal of Grid Computing. 17(4), 651–676 (2019)

    Article  Google Scholar 

  40. Computing, A.: An architectural blueprint for autonomic computing. IBM White Paper. 31(2006), 1–6 (2006)

    Google Scholar 

  41. Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: iFogSim: a toolkit for modeling and simulation of resource management techniques in the internet of things, edge and fog computing environments. Software: Practice and Experience. 47(9), 1275–1296 (2017)

    Google Scholar 

  42. Burd, T.D., Brodersen, R.W.: Processor design for portable systems. Journal of VLSI signal processing systems for signal, image and video technology. 13(2), 203–221 (1996)

    Article  Google Scholar 

  43. Sutton, R.S., Barto, A.G.: "Reinforcement Learning: an Introduction," Ed: Cambridge. MIT Press, MA (2011)

    Google Scholar 

  44. Tang, L., He, S.: Multi-user computation offloading in mobile edge computing: a behavioral perspective. IEEE Netw. 32(1), 48–53 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Shahidinejad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahidinejad, A., Farahbakhsh, F., Ghobaei-Arani, M. et al. Context-Aware Multi-User Offloading in Mobile Edge Computing: a Federated Learning-Based Approach. J Grid Computing 19, 18 (2021). https://doi.org/10.1007/s10723-021-09559-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10723-021-09559-x

Keywords

Navigation