Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Dynamic Partitioning of GATE Monte-Carlo Simulations on EGEE

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

The EGEE Grid offers the necessary infrastructure and resources for reducing the running time of particle tracking Monte-Carlo applications like GATE. However, efforts are required to achieve reliable and efficient execution and to provide execution frameworks to end-users. This paper presents results obtained with porting the GATE software on the EGEE Grid, our ultimate goal being to provide reliable, user-friendly and fast execution of GATE to radiation therapy researchers. To address these requirements, we propose a new parallelization scheme based on a dynamic partitioning and its implementation in two different frameworks using pilot jobs and workflows. Results show that pilot jobs bring strong improvement w.r.t. regular gLite submission, that the proposed dynamic partitioning algorithm further reduces execution time by a factor of two and that the genericity and user-friendliness offered by the workflow implementation do not introduce significant overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, S., Namgyu, K., Seehoon, L., Soonwook, H., Dukyun, N., Koblitz, B., Breton, V., Sangyong, H.: Improvement of task retrieval performance using AMGA in a large-scale virtual screening. In: 4th Conference on Networked Computing and Advanced Information Management, pp. 456–463 (2008)

  2. Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce Dubois, P., Asai, M., Barrand, G., Capra, R., Chauvie, S., Chytracek, R., Cirrone, G., Cooperman, G., Cosmo, G., Cuttone, G., Daquino, G., Donszelmann, M., Dressel, M., Folger, G., Foppiano, F., Generowicz, J., Grichine, V., Guatelli, S., Gumplinger, P., Heikkinen, A., Hrivnacova, I., Howard, A., Incerti, S., Ivanchenko, V., Johnson, T., Jones, F., Koi, T., Kokoulin, R., Kossov, M., Kurashige, H., Lara, V., Larsson, S., Lei, F., Link, O., Longo, F., Maire, M., Mantero, A., Mascialino, B., McLaren, I., Mendez Lorenzo, P., Minamimoto, K., Murakami, K., Nieminen, P., Pandola, L., Parlati, S., Peralta, L., Perl, J., Pfeiffer, A., Pia, M., Ribon, A., Rodrigues, P., Russo, G., Sadilov, S., Santin, G., Sasaki, T., Smith, D., Starkov, N., Tanaka, S., Tcherniaev, E., Tome, B., Trindade, A., Truscott, P., Urban, L., Verderi, M., Walkden, A., Wellisch, J., Williams, D., Wright, D., Yoshida, H.: Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53(1), 270–278 (2006)

    Article  Google Scholar 

  3. Bagnasco, S., Betev, L., Buncic, P., Carminati, F., Cirstoiu, C., Grigoras, C., Hayrapetyan, A., Harutyunyan, A., Peters, A.J., Saiz, P.: Alien: Alice environment on the Grid. J. Phys. Conf. Ser. 119(6), 062012 (2008)

    Article  Google Scholar 

  4. Cirne, W., Brasileiro, F., Paranhos, D., Goes, L., Voorsluys, W.: On the efficacy, efficiency and emergent behavior of task replication in large distributed systems. Parallel Comput. 33, 213–234 (2007)

    Article  Google Scholar 

  5. Deelman, E., Singh, G., Su, M.H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Berriman, G.B., Good, J., Laity, A., Jacob, J.C., Katz, D.S.: Pegasus: a framework for mapping complex scientific workflows onto distributed systems. Sci. Program. J. 13(3), 219–237 (2005)

    Google Scholar 

  6. Galyuk, Y.P., Memnonov, V., Zhuravleva, S.E., Zolotarev, V.I.: Grid technology with dynamic load balancing for Monte Carlo simulations. In: PARA ’02: Proceedings of the 6th International Conference on Applied Parallel Computing Advanced Scientific Computing, pp. 515–520. Springer, London (2002)

    Google Scholar 

  7. Glatard, T., Montagnat, J., Lingrand, D., Pennec, X.: Flexible and efficient workflow deployment of data-intensive applications on Grids with MOTEUR. Int. J. High Perform. Comput. Appl. (IJHPCA) 22(3), 347–360 (2008)

    Article  Google Scholar 

  8. Jacq, N., Salzeman, J., Jacq, F., Legré, Y., Medernach, E., Montagnat, J., Maass, J., Reichstadt, M., Schwichtenberg, H., Sridhar, M., Kasam, V., Zimmermann, M., Hofmann, M., Breton, V.: Grid-enabled virtual screening against malaria. J. Grid Computing (JGC) 6(1), 29–43 (2008)

    Article  Google Scholar 

  9. Jacq, N., Salzemann, J., Jacq, F., Legré, Y., Medernach, E., Montagnat, J., Maass, A., Reichstadt, M., Schwichtenberg, H., Sridhar, M., Kasam, V., Zimmermann, M., Hofmann, M., Breton, V.: Grid enabled virtual screening against malaria. J. Grid Computing 6, 29–43 (2008)

    Article  Google Scholar 

  10. Jan, S., Santin, G., Strul, D., Staelens, S., Assi, K., Autret, D., Avner, S., Barbier, R., Bardis, M., Bloomfield, P.M., Brasse, D., Breton, V., Bruyndonckx, P., Buvat, I., Chatziioannou, A.F., Choi, Y., Chung, Y.H., Comtat, C., Donnarieix, D., Ferrer, L., Glick, S.J., Groiselle, C.J., Guez, D., Honore, P.F., Kerhoas-Cavata, S., Kirov, A.S., Kohli, V., Koole, M., Krieguer, M., van der Laan, D.J., Lamare, F., Largeron, G., Lartizien, C., Lazaro, D., Maas, M.C., Maigne, L., Mayet, F., Melot, F., Merheb, C., Pennacchio, E., Perez, J., Pietrzyk, U., Rannou, F.R., Rey, M., Schaart, D.R., Schmidtlein, C.R., Simon, L., Song, T.Y., Vieira, J.M., Visvikis, D., de Walle, R.V., Wiers, E., Morel, C.: GATE: a simulation toolkit for PET and SPECT. Phys. Med. Biol. 49(19), 4543–4561 (2004)

    Article  Google Scholar 

  11. Kacsuk, P., Farkas, Z., Fedak, G.: Towards making BOINC and EGEE interoperable. In: 4th eScience Conference, pp. 478–484. Indianapolis (2008)

  12. Kacsuk, P., Sipos, G.: Multi-Grid, multi-user workflows in the P-GRADE Grid portal. J. Grid Computing (JGC) 3(3–4), 221–238 (2005)

    Article  Google Scholar 

  13. Laure, E., Fisher, S., Frohner, A., Grandi, C., Kunszt, P., Krenek, A., Mulmo, O., Pacini, F., Prelz, F., White, J., Barroso, M., Buncic, P., Byrom, R., Cornwall, L., Craig, M., Meglio, A.D., Djaoui, A., Giacomini, F., Hahkala, J., Hemmer, F., Hicks, S., Edlund, A., Maraschini, A., Middleton, R., Sgaravatto, M., Steenbakkers, M., Walk, J., Wilson, A.: Programming the Grid with gLite. Comput. Methods Sci. Technol. 12(1), 33–45 (2006)

    Google Scholar 

  14. Maeno, T.: Panda: distributed production and distributed analysis system for atlas. J. Phys. Conf. Ser. 119(6), 062,036 (4 pp.) (2008)

    Article  Google Scholar 

  15. Maheshwari, K., Missier, P., Goble, C., Montagnat, J.: Medical image processing workflow support on the EGEE Grid with Taverna. In: Intl Symposium on Computer Based Medical Systems (CBMS’09). IEEE (2009)

  16. Maigne, L., Hill, D., Calvat, P., Breton, V., Lazaro, D., Reuillon, R., Legré, Y., Donnarieix, D.: Parallelization of Monte-Carlo simulations and submission to a Grid environment. In: Parallel Processing Letters HealthGRID 2004, vol. 14, pp. 177–196. Clermont-Ferrand France (2004)

  17. Mascagni, M., Li, Y.: Computational infrastructure for parallel, distributed, and Grid-based Monte-Carlo computations. In: Large-Scale Scientific Computing, pp. 39–52 (2003)

  18. Moscicki, J.T.: Diane—distributed analysis environment for Grid-enabled simulation and analysis of physics data. In: Nuclear Science Symposium Conference Record, 2003 IEEE, vol. 3, pp. 1617–1620 (2003)

  19. Moscicki, J.T.: Distributed analysis environment for HEP and interdisciplinary applications. Nucl. Instrum. Methods Phys. Res. A 502, 426–429 (2003)

    Article  Google Scholar 

  20. Moscicki, J.T., Brochu, F., Ebke, J., Egede, U., Elmsheuser, J., Harrison, K., Jones, R., Lee, H., Liko, D., Maier, A., Muraru, A., Patrick, G., Pajchel, K., Reece, W., Samset, B., Slater, M., Soroko, A., Tan, C., van der Ster, D., Williams, M.: Ganga: a tool for computational-task management and easy access to Grid resources. Comput. Phys. Commun. 180, 2303–2316 (2009)

    Article  Google Scholar 

  21. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T., Glover, K., Pocock, M.R., Wipat, A., Li, P.: Taverna: a tool for the composition and enactment of bioinformatics workflows. Bioinformatics J. 17(20), 3045–3054 (2004)

    Article  Google Scholar 

  22. Olabarriaga, S., de Boer, P.T., Maheshwari, K., Belloum, A., Snel, J., Nederveen, A., Bouwhuis, M. (eds.): Virtual Lab for fMRI: Bridging the Usability Gap. IEEE, Amsterdam (2006)

    Google Scholar 

  23. Olabarriaga, S., Glatard, T., de Boer, P.T.: A virtual laboratory for medical image analysis. IEEE Trans. Inf. Technol. Biomed. (TITB), in press (2010)

  24. Procassini, R., O’Brien, M., Taylor, J.: Load balancing of parallel Monte Carlo transport calculations. In: Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications. Palais des Papes, Avignon, Fra (2005)

  25. Germain Renaud, C., Loomis, C., Moscicki, J., Texier, R.: Scheduling for responsive Grids. J. Grid Computing 6, 15–27 (2008)

    Article  Google Scholar 

  26. Reuillon, R., Hill, D., Gouinaud, C., El Bitar, Z., Breton, V., Buvat, I.: Monte Carlo simulation with the GATE software using Grid computing. In: Proceedings of NOTERE 2008 8ème Conférence Internationale sur les NOuvelles TEchnologies de la REpartition, NOTERE 2008. Lyon France (2008)

  27. Sfiligoi, I.: glideinWMS—a generic pilot-based workload management system. J. Phys. Conf. Ser. 119(6), 062,044 (9 pp.) (2008)

    Google Scholar 

  28. Tsaregorodtsev, A., Bargiotti, M., Brook, N., Ramo, A.C., Castellani, G., Charpentier, P., Cioffi, C., Closier, J., Diaz, R.G., Kuznetsov, G., Li, Y.Y., Nandakumar, R., Paterson, S., Santinelli, R., Smith, A.C., Miguelez, M.S., Jimenez, S.G.: Dirac: a community Grid solution. J. Phys. Conf. Ser. 119(6), 062,048 (12 pp.) (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sorina Camarasu-Pop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camarasu-Pop, S., Glatard, T., Mościcki, J.T. et al. Dynamic Partitioning of GATE Monte-Carlo Simulations on EGEE. J Grid Computing 8, 241–259 (2010). https://doi.org/10.1007/s10723-010-9153-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10723-010-9153-0

Keywords

Navigation