Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Entropic Grid Scheduling

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

Computational Grids (CGs) are large scale dynamical networks of geographically distributed peer resource clusters. These clusters are independent but cooperating computing systems bound by a management framework for the provision of computing services, called Grid Services. In its basic form, the Grid scheduling problem consists in finding at least one cluster that has the capacity to handle, within the constraints of a specified quality of service, a user service request submitted to the CG. Since CGs span distinct management domains, the scheduling process has to be decentralized. Furthermore, it has to account for the ubiquitous uncertainty on the state of the CG. In this paper, we propose a scalable distributed Entropy-based scheduling approach that utilizes a Markov chain model to capture the dynamics of the service capacity state. An entropy-based quantification of the uncertainty on the service capacity information is developed and explicitly integrated within the proposed Grid scheduling approach. The performance of the proposed scheduling strategy is validated, through simulation, against a random delegation scheme and a load balancing-based scheduling strategy with respect to throughput, exploitation and convergence speed, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Economist: One Grid to rule them all. The Economist 373, 94 (2004)

    Google Scholar 

  2. Gustafson, J.: Program of grand challenge problems: Expectations and results. In: Aizu International Symposium on Parallel Algorithms/Architecture Synthesis, pp. 2–7 (1997)

  3. Buyya, R., Branson, K., Giddy J., Abramson, D.: The Virtual Laboratory: A toolset to enable distributed molecular modelling for drug design on the world-wide Grid. Concurr. Comput. Pract. Exp. 15, 1–25 (2003)

    Article  MATH  Google Scholar 

  4. Tantoso, E., Wahab, H.A., Chan, H.Y.: Molecular docking: An example of Grid enabled applications. New Gener. Comput. 22, 189–190 (2004)

    Article  MATH  Google Scholar 

  5. Ahmad, I., Kwok, Y.-K.: On parallelizing the multiprocessor scheduling problem. IEEE Trans. Parallel Distrib. Syst. 10, 414–432 (1999)

    Article  Google Scholar 

  6. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Elsevier Science, San Francisco (2004)

    Google Scholar 

  7. Casavant, T.L., Kuhl, J.G.: A taxonomy of scheduling in general-purpose distributed computing systems. IEEE Trans. Softw. Eng. 14, 141–155 (1988)

    Article  Google Scholar 

  8. Buyya, R.: High Performance Cluster Computing. Prentice Hall PTR, Upper Saddle River, New Jersey (1999)

    Google Scholar 

  9. Braun, T.D., Siegel, H.J., Beck, N., Boloni, L., Maheswaran, M., Reuther, A.I., Robertson, J.P., Theys M.D., Yao, B.: Taxonomy for describing matching and scheduling heuristics for mixed-machine heterogeneous computing systems. In: Proceedings of the IEEE Symposium on Reliable Distributed Systems, pp. 330–335, 1998

  10. Al-Mouhamed, M.A.: Lower bound on the number of processors and time for scheduling precedence graphs with communication costs. IEEE Trans. Softw. Eng. 16, 1317–1322 (1990)

    Article  MathSciNet  Google Scholar 

  11. El-Rewini, H., Lewis, T.G., Ali, H.H.: Task Scheduling in Parallel and Distributed Systems. Prentice Hall, Englewood Cliffs, New Jersey (1994)

    Google Scholar 

  12. Hwang, J.-J., Chow, Y.-C., Anger, F.D., Lee, C.-Y.: Scheduling precedence graphs in systems with interprocessor communication times. SIAM J. Comput. 18, 244–257 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cosnard, M., Loi, M.: Automatic task graph generation techniques. Parallel Process. Lett. 54, 527–538 (1995)

    Article  Google Scholar 

  14. Kwok, Y.-K., Ahmad, I.: Benchmarking the task graph scheduling algorithms. In: Proceedings of the International Parallel Processing Symposium, IPPS, p. 531, 1998

  15. Kwok, Y.-K., Ahmad, I.: Static scheduling algorithms for allocating directed task graphs to multiprocessors. ACM Comput. Surv. 31, 406–471 (1999)

    Article  Google Scholar 

  16. Kwok, Y.-K., Ahmad, I.: Dynamic critical-path scheduling: An effective technique for allocating task graphs to multiprocessors. IEEE Trans. Parallel Distrib. Syst. 7, 506–521 (1996)

    Article  Google Scholar 

  17. Ahmad, I., Kwok, Y.-K.: Parallel program scheduling techniques. In: Buyya, R. (ed.), High Performance Cluster Computing, pp. 553–578. Prentice Hall PTR, New Jersey (1999)

    Google Scholar 

  18. Gary, R., Johnson, D.: Computers and Intractability – A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    Google Scholar 

  19. He, X., Sun, X., Von Laszewski, G.: QoS guided Min-Min heuristic for Grid task scheduling. J. Comput. Sci. Technol. 18, 442–451 (2003)

    Article  MATH  Google Scholar 

  20. Berman, F., Wolski, R., Casanova, H., Cirne, W., Dail, H., Faerman, M., Figueira, S., Hayes, J., Obertelli, G., Schopf, J., Shao, G., Smallen, S., Spring, N., Su A., Zagorodnov, D.: Adaptive computing on the Grid using AppLeS. IEEE Trans. Parallel Distrib. Syst. 14, 369–382 (2003)

    Article  Google Scholar 

  21. Weng, C., Lu, X.: Heuristic scheduling for bag-of-tasks applications in combination with QoS in the computational Grid. Future Gener. Comput. Syst. 21, 271–280 (2005)

    Article  Google Scholar 

  22. Berman, F., Casanova, H., Chien, A., Cooper, K., Dail, H., Dasgupta, A., Deng, W., Dongarra, J., Johnsson, L., Kennedy, K., Koelbel, C., Liu, B., Liu, X., Mandal, A., Marin, G., Mazina, M., Mellor-Crummey, J., Mendes, C., Olugbile, A., Patel, M., Reed, D., Shi, Z., Sievert, O., Xia, H., Yarkhan, A.: New Grid scheduling and rescheduling methods in the GrADS project. Int. J. Parallel Program. 33, 209–229 (2005)

    Article  Google Scholar 

  23. Nakada, H., Sato, M., Sekiguchi, S.: Design and implementations of Ninf: Towards a global computing infrastructure. Future Gener. Comput. Syst. 15, 649–658 (1999)

    Article  Google Scholar 

  24. Cao, J., Jarvis, S.A., Saini, S., Kerbyson, D.J., Nudd, G.R.: ARMS: An agent-based resource management system for Grid computing. Sci. Program. 10, 135–148 (2002)

    Google Scholar 

  25. Sun, X.-H., Wu, M.: Grid Harvest Service: A system for long-term, application-level task scheduling. In: Parallel and Distributed Processing Symposium, pp. 25–33, 2003

  26. Gao, Y., Rong, H., Huang, J.Z.: Adaptive Grid job scheduling with genetic algorithms. Future Gener. Comput. Syst. 21, 151–161 (2005)

    Article  Google Scholar 

  27. Cao, J., Spooner, D.P., Jarvis, S.A., Nudd, G.R.: Grid load balancing using intelligent agents. Future Gener. Comput. Syst. 21, 135–149 (2005)

    Article  Google Scholar 

  28. Spooner, D.P., Jarvis, S.A., Cao, J., Saini, S., Nudd, G.R.: Local Grid scheduling techniques using performance prediction. IEE Proc. E 150, 87–96 (2003)

    Google Scholar 

  29. Yang, L., Schopf, J.M., Foster, I.: Conservative Scheduling: Using Predicted Variance to Improve Scheduling Decisions in Dynamic Environments. In: Proceedings of the 2003 ACM/IEEE conference on Supercomputing, pp. 31–47, 2003

  30. Krothapalli, N., Deshmukh, A.V.: Dynamic allocation of communicating tasks in computational grids. IIE Trans. (Institute of Industrial Engineers) 36, 1037–4053 (2004)

    Google Scholar 

  31. Krauter, K., Buyya, R., Maheswaran, M.: A taxonomy and survey of Grid resource management systems for distributed computing. Softw. Pract. Exp. 32, 135–164 (2002)

    Article  MATH  Google Scholar 

  32. Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., Freund, R.F.: Dynamic matching and scheduling of a class of independent tasks onto heterogeneous computing systems. Proceedings of the Heterogeneous Computing Workshop, HCW, pp. 30–44, 1999

  33. Hamscher, V., Schwiegelshohn, U., Streit, A., Yahyapour, R.: Evaluation of Job-Scheduling Strategies for Grid Computing. In: Proceedings of the 1st IEEE/ACM International Workshop on Grid Computing (Grid 2000), pp. 191–202, 2000

  34. Adzigogov, L., Soldatos, J., Polymenakos, L.: EMPEROR: An OGSA Grid meta-scheduler based on dynamic resource predictions. Journal of Grid Computing 3, 19–37 (2005)

    Article  Google Scholar 

  35. Sanyal, S., Das, S.K.: MaTCH: Mapping Data-Parallel Tasks on a Heterogeneous Computing Platform Using the Cross Entropy Heuristic. In: Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium, pp. 64–74, 2005

  36. Casanova, H., Bartol, T.M., Stiles, J., Berman, F.: Distributing MCell simulations on the Grid. Int. J. High Perform. Comput. Appl. 15, 243–257 (2001)

    Article  Google Scholar 

  37. Yang, L., Foster, I., Schopf, J.M.: Homeostatic and Tendency-based CPU Load Predictions. In: Procedings of the Parallel and Distributed Processing Symposium, 2003

  38. He, L., Jarvis, S.A., Spooner, D.P., Chen, X., Nudd, G.R.: Hybrid performance-based workload management for multiclusters and grids. IEE Proc. Softw. 151, 224–231 (2004)

    Article  Google Scholar 

  39. Goldman, A., Queiroz, C.: A model for parallel job scheduling on dynamical computer Grids. Concurr. Comput. Pract. Exp. 16, 461–468 (2004)

    Article  Google Scholar 

  40. Abramson, D., Buyya, R., Giddy, J.: A computational economy for Grid computing and its implementation in the Nimrod-G resource broker. Future Gener. Comput. Syst. 18, 1061–1074 (2002)

    MATH  Google Scholar 

  41. Chunlin, L., Layuan, L.: A distributed utility-based two level market solution for optimal resource scheduling in computational Grid. Parallel Comput. 31, 332–351 (2005)

    Article  Google Scholar 

  42. Buyya, R., Abramson, D., Venugopal, S.: The Grid economy. Proc. IEEE 93, 698–714 (2005)

    Article  Google Scholar 

  43. Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic models for resource management and scheduling in Grid computing. Concurr. Comput. Pract. Exp. 14, 1507–1542 (2002)

    Article  MATH  Google Scholar 

  44. Czajkowski, K., Foster, I., Kesselman, C.: Agreement-based resource management. Proc. IEEE 93, 631–643 (2005)

    Article  Google Scholar 

  45. Smith, W., Foster, I., Taylor, V.: Scheduling with advanced reservations. Proceedings of the International Parallel Processing Symposium, IPPS, pp. 127–132, 2000

  46. McGough, A.S., Afzal, A., Darlington, J., Furmento, N., Mayer, A., Young, L.: Making the Grid predictable through reservations and performance modelling. Comput. J. 48, 358–368 (2005)

    Article  Google Scholar 

  47. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid information services for distributed resource sharing. In: IEEE International Symposium on High Performance Distributed Computing, Proceedings,pp. 181–194, 2001

  48. Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S., Kesselman, C., Maquire, T., Sandholm, T., Snelling D., Vanderbilt, P.: Open Grid Services Infrastructure (OGSI), Global Grid Forum (2003)

  49. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the Internet topology. Comput. Commun. Rev. 29, 251–262 (1999)

    Article  Google Scholar 

  50. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  51. Al-Ali, R., Hafid, A., Rana, O., Walker, D.: An approach for quality of service adaptation in service-oriented Grids. Concurr. Comput. Pract. Exp. 16, 401–412 (2004)

    Article  Google Scholar 

  52. Singh, M.P., Huhns, M.N.: Service-Oriented Computing: Semantics, Processes, Agents. Wiley (2005)

  53. Derbal, Y.: Service oriented Grid resource modeling and management. In: Proceedings of the 1st International Conference on Web Information Systems and Technologies (WEBIST 2005), Miami, Florida, pp. 146–153, 2005

  54. Ross, S.M.: Introduction to Probability Models. Academic, San Diego, California (1989)

    MATH  Google Scholar 

  55. Zhang, X., Schopf, J.M.: Performance analysis of the globus toolkit monitoring and discovery service, MDS2. In: Proceedins of the IEEE International Performance, Computing and Communications Conference, pp. 843–849, 2004

  56. Fast, J.D.: Entropy. The Significance of the Concept of Entropy and its Applications in Science and Technology. [Translated by M.E. Mulder-Woolcock]. Macmillan, [London] (1970)

    Google Scholar 

  57. Saridis, G.N.: Analytic formulation of the principle of increasing precision with decreasing intelligence for intelligent machines. Automatica 25, 461–467 (1989)

    Article  MATH  Google Scholar 

  58. Shannon, C.E., Weaver, W.: The mathematical theory of communication. University of Chicago, Urbana (1978)

    MATH  Google Scholar 

  59. Saridis, G.N.: Entropy formulation of optimal and adaptive control. IEEE Trans. Automat. Contr. 33, 713–721 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  60. Conant, R.C.: Laws of information which govern systems. IEEE Trans. Syst. Man Cybern. SMC-6, 240–255 (1976)

    MathSciNet  Google Scholar 

  61. Gray, J.: Distributed Computing Economics. Microsoft Research (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youcef Derbal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derbal, Y. Entropic Grid Scheduling. J Grid Computing 4, 373–394 (2006). https://doi.org/10.1007/s10723-006-9034-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10723-006-9034-8

Key words

Navigation