Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Requirements Analysis for Future Satellite Gravity Mission Improved-GRACE

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The Earth’s gravitational field from the Next-Generation Gravimetry Mission (NGGM) and the Improved-Gravity Recovery and Climate Experiment (Improved-GRACE) complete up to degree and order 120 is recovered by a closed-loop numerical simulation using different orbital altitudes of 325 and 300 km, different orbital inclinations of 96.78° and 89° and different inter-satellite ranges of 10 and 50 km. The preferred orbit parameters of the future twin Improved-GRACE satellites are proposed based on the results of the simulations in this study. The research results show: (1) In order to achieve the scientific objectives, which require that the accuracy of the next-generation Earth gravity field models is at least one order of magnitude better than that of the current gravity models, the orbit design at an altitude of 300 ± 50 km is recommended for the future Improved-GRACE mission. This altitude is determined by a trade-off analysis between the recovery accuracy of the gravity field and the operational lifetime of the satellite system. (2) Because the accuracy of the Earth’s gravitational field from NGGM with an orbital inclination of 96.78° will be decreased due to a lack of the observation data in the polar areas, we propose that a near-polar orbit (inclination of 89° ± 2°) is a preferable selection for the future twin Improved-GRACE satellites. (3) The future Improved-GRACE mission has to adopt an inter-satellite range of 50 ± 10 km, because the common signals of the Earth’s gravitational field between the twin NGGM satellites will be substantially eliminated with a shorter inter-satellite range of 10 km. With these orbit design parameters, the Earth’s gravitational field from the Improved-GRACE mission is precisely recovered complete up to degree and order 120 with a cumulative geoid height error of about 0.7 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anselmi A, Cesare S, Cavaglia R (2010) Assessment of a next generation mission for monitoring the variations of Earth’s gravity, ESA Contract 22643/09/NL/AF, Final Report, Issue 2, 22 Dec 2010. www.iapg.bgu.tum.de/mediadb/5746123/5746124/04_ao7317_rd4-nggm_finalreport_issue2.pdf

  • Bender PL, Hall JL, Ye J, Klipstein WM (2003) Satellite–satellite laser links for future gravity missions. Space Sci Rev 108:377–384

    Article  Google Scholar 

  • Cesare S, Mottini S, Musso F, Parisch M, Sechi G, Canuto E, Aguirre M, Leone B, Massotti L, Silvestrin P (2010) Satellite formation for a next generation gravimetry mission. In: 7th IAA symposium on small satellite missions for earth observation, May 6th, Berlin Germany. http://link.springer.com/chapter/10.1007/978-3-642-03501-2_11?no-access=true

  • Chambers DP, Wahr J, Nerem RS (2004) Preliminary observations of global ocean mass variations with GRACE. Geophys Res Lett 31(13). doi: 10.1029/2004GL020461

  • Ditmar P, van Eck van der Sluijs AA (2004) A technique for modeling the Earth’s gravity field on the basis of satellite accelerations. J Geod 78(1):12–33

    Google Scholar 

  • Dobslaw H, Thomas M, Bergmann I, Esselborn S, Flechtner F, Zenner L (2012) OMCT—new time-series for oceanic mass, angular momentum and sea level variability. EGU General Assembly 2012, held 22–27 April, 2012 in Vienna, Austria, 10195. http://adsabs.harvard.edu/abs/2012EGUGA..1410195D

  • Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res 108:8851. doi:10.1029/2002JD003296 D22

    Article  Google Scholar 

  • Gardner AS, Moholdt G, Cogley JG, Wouters B, Arendt AA, Wahr J, Berthier E, Hock R, Pfeffer WT, Kaser G, Ligtenberg SRM, Bolch T, Sharp MJ, Hagen JO, van den Broeke MR, Paul F (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340(6134):852–857

    Article  Google Scholar 

  • Gruber Th, Panet I, Johannessen J, Doll B, Christophe B, Sheard B, E.motion Team (2012) Earth system mass transport mission (e.motion): technological and mission configuration challenges. In: International symposium on gravity, geoid and height systems, GGHS2012, Venice, 9–12. Oct. 2012. http://www.espace-tum.de/mediadb/4540008/4540009/20121010_Gruber_Poster_emotion.pdf

  • Han SC (2004) Efficient determination of global gravity field from satellite-to-satellite tracking mission. Celest Mech Dyn Astron 88:69–102

    Article  Google Scholar 

  • Han SC, Shum CK, Bevis M, Ji C, Kuo CY (2006) Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake. Science 313(5787):658–662

    Article  Google Scholar 

  • Jekeli C (1999) The determination of gravitational potential differences from SST tracking. Celest Mech Dyn Astron 75(2):85–101

    Article  Google Scholar 

  • Kaula WM (1966) Theory of satellite geodesy. Blaisdell Publishing Company, London

    Google Scholar 

  • Kim J (2000) Simulation study of a low–low satellite-to-satellite tracking mission. University of Texas, Austin, pp 1–253

    Google Scholar 

  • Klees R, Liu X, Wittwer T, Gunter BC, Revtova EA, Tenzer R, Ditmar P, Winsemius HC, Savenije HHG (2008) A comparison of global and regional GRACE models for land hydrology. Surv Geophys 29(4–5):335–359

    Article  Google Scholar 

  • Loomis B (2009) Simulation study of a follow-on gravity mission to GRACE [PhD Dissertation]. University of Colorado, Boulder, pp 1–193

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56:394–415

    Article  Google Scholar 

  • O’Lenic EA, Unger DA, Halpert MS, Pelman KS (2008) Developments in operational long-range climate prediction at CPC. Weather Forecast 23:496–515

    Article  Google Scholar 

  • Palmer TN, Brankovic C, Molteni F, Tibaldi S, Ferranti L, Hollingsworth A, Cubasch U, Klinker E (1990) The European Centre for Medium-Range Weather Forecasts (ECMWF) program on extended-range prediction. Bull Am Meteorol Soc 71:1317–1330

    Article  Google Scholar 

  • Panet I, Flury J, Biancale R, Gruber T, Johannessen J, van den Broeke MR, van Dam T, Gegout P, Hughes CW, Ramillien G, Sasgen I, Seoane L, Thomas M (2013) Earth system mass transport mission (E.motion): a concept for future earth gravity field measurements from space. Surv Geophys 34(2):141–163

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117:B04406

    Google Scholar 

  • Petit G and Luzum B (2010) IERS Conventions (2010), IERS Technical Note 36, Verlagdes Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany. ftp://maia.usno.navy.mil/conv2010/tn36.pdf

  • Pollitz FF (2006) A new class of earthquake observations. Science 313(5787):619–620

    Article  Google Scholar 

  • Ramillien G, Famiglietti JS, Wahr J (2008) Detection of continental hydrology and glaciology signals from GRACE: a review. Surv Geophys 29(4–5):361–374

    Article  Google Scholar 

  • Reigber C, Schmidt R, Flechtner F (2004) An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J Geodyn 39(1):1–10

    Article  Google Scholar 

  • Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng C-J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Meteor Soc 85:381–394

    Article  Google Scholar 

  • Roesset PJ (2003) A simulation study of the use of accelerometer data in the GRACE mission. University of Texas, Austin, pp 1–253

    Google Scholar 

  • Rummel R (2003) How to climb the gravity wall. Space Sci Rev 108:1–14

    Article  Google Scholar 

  • Savcenko R, Bosch W (2011) EOT11a—a new tide model from Multi-Mission Altimetry. Ocean Surface Topography Science Team (OSTST) Meeting, October 19–21, 2011, San Diego, USA. ftp://dgfi.badw.de/pub/EOT11a/doc/savcenko_eot11a_sandiego.pdf

  • Schmidt R, Flechtner F, Meyer U, Neumayer K-H, Dahle Ch, König R, Kusche J (2008) Hydrological signals observed by the GRACE satellites. Surv Geophys 29(4–5):319–334

    Article  Google Scholar 

  • Schrama E, Wouters B, Vermeersen B (2011) Present day regional mass loss of Greenland observed with satellite gravimetry. Surv Geophys 2(4–5):377–385

    Article  Google Scholar 

  • Silvestrin P, Aguirre M, Massotti L, Leone B, Cesare S, Kern M, Haagmans R (2012) The future of the satellite gravimetry after the GOCE mission. In: Kenyon S et al. (eds) Geodesy for Planet Earth, International Association of Geodesy Symposia 136, pp 223–230. http://link.springer.com/chapter/10.1007/978-3-642-20338-1_27?no-access=true

  • Sneeuw N (2000) A semi-analytical approach to gravity field analysis from satellite observations. Technical University of Munich, Munich, pp 1–112

    Google Scholar 

  • Sneeuw N, Flury J, Rummel R (2005) Science requirements on future missions and simulated mission scenarios. Earth Moon Planets 94(1):113–142

    Google Scholar 

  • Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Pekker T, Poole S, Wang F (2005) GGM02—an improved Earth gravity field model from GRACE. J Geod 79(8):467–478

    Article  Google Scholar 

  • Wiese DN, Folkner WM, Nerem RS (2009) Alternative mission architectures for a gravity recovery satellite mission. J Geod 83(6):569–581

    Article  Google Scholar 

  • Wunsch C, Heimbach P, Ponte RM, Fukumori I, the ECCO-GODAE Consortium Members (2009) The global general circulation of the ocean estimated by the ECCO-Consortium. Oceanography 22(2): 88–103

  • Xu PL (2008) Position and velocity perturbations for the determination of geopotential from space geodetic measurements. Celest Mech Dyn Astron 100(3):231–249

    Article  Google Scholar 

  • Zheng W, Shao CG, Luo J, Hsu HT (2006) Numerical simulation of Earth’s gravitational field recovery from SST based on the energy conservation principle. Chin J Geophys 49(3):644–650

    Article  Google Scholar 

  • Zheng W, Shao CG, Luo J, Hsu HT (2008) Improving the accuracy of GRACE Earth’s gravitational field using the combination of different inclinations. Prog Nat Sci 18(5):555–561

    Article  Google Scholar 

  • Zheng W, Hsu HT, Zhong M, Yun MJ (2009) Accurate and rapid error estimation on global gravitational field from current GRACE and future GRACE Follow-On missions. Chin Phys B 18(8):3597–3604

    Article  Google Scholar 

  • Zheng W, Hsu HT, Zhong M, Yun MJ, Zhou XH, Peng BB (2010a) Research on optimal selection of orbital parameters in the Improved-GRACE satellite gravity measurement mission. J Geod Geodyn 30(2):43–48

    Google Scholar 

  • Zheng W, Hsu HT, Zhong M, Yun MJ (2010b) Research progress in international gravity satellites and future satellite gravity measurement program in China. Sci Surv Mapp 35(1):5–9

    Google Scholar 

  • Zheng W, Hsu HT, Zhong M, Yun MJ (2011a) Accurate and fast measurement of GRACE Earth’s gravitational field using the intersatellite range-acceleration method. Prog Geophys 26(2):416–423

    Google Scholar 

  • Zheng W, Hsu HT, Zhong M, Yun MJ (2011b) Accurate and rapid determination of GRACE Earth’s gravitational field using improved the pre-conditioned conjugate-gradient approach and three-dimensional interpolation method. Prog Geophys 26(3):805–812

    Google Scholar 

  • Zheng W, Hsu HT, Zhong M, Yun MJ (2012a) Efficient accuracy improvement of GRACE global gravitational field recovery using a new inter-satellite range interpolation method. J Geodyn 53:1–7

    Article  Google Scholar 

  • Zheng W, Hsu HT, Zhong M, Yun MJ (2012b) Progress in international next-generation satellite gravity measurement missions. J Geod Geodyn 32(3):152–159

    Google Scholar 

  • Zheng W, Hsu HT, Zhong M, Yun MJ (2012c) Precise recovery of the Earth’s gravitational field with GRACE: Intersatellite Range-Rate Interpolation Approach. IEEE Geosci Remote Sens Lett 9(3):422–426

    Article  Google Scholar 

  • Zheng W, Hsu HT, Zhong M, Yun MJ (2013) Precise and rapid recovery of the Earth’s gravitational field by the next-generation four-satellite cartwheel formation system. Chin J Geophys 56(9):2928–2935

    Google Scholar 

Download references

Acknowledgments

We greatly appreciate the helpful suggestions from editors and anonymous reviewers. This work was supported by the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences for Distinguished Young Scholar (Grant No. KZCX2-EW-QN114), the National Natural Science Foundation of China (Grant Nos. 41004006, 41202094, 41131067 and 11173049), the Merit-based Scientific Research Foundation of the State Ministry of Human Resources and Social Security of China for Returned Overseas Chinese Scholars (Grant No. 2011), the Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, China (Grant No. 11-01-02), the Open Research Fund Program of the Key Laboratory of Geo-Informatics of National Administration of Surveying, Mapping and Geo-information of China (Grant No. 201322), the Open Research Fund Program of the State Key Laboratory of Geo-information Engineering, China (Grant No. SKLGIE2013-M-1-5), the Main Direction Program of Institute of Geodesy and Geophysics, Chinese Academy of Sciences (Grant No. Y309451045) and the Research Fund Program of State Key Laboratory of Geodesy and Earth’s Dynamics, China (Grant No. Y309491050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Hsu, H., Zhong, M. et al. Requirements Analysis for Future Satellite Gravity Mission Improved-GRACE. Surv Geophys 36, 87–109 (2015). https://doi.org/10.1007/s10712-014-9306-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-014-9306-y

Keywords

Navigation