Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Variable population size and evolution acceleration: a case study with a parallel evolutionary algorithm

  • Contributed Article
  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

With current developments of parallel and distributed computing, evolutionary algorithms have benefited considerably from parallelization techniques. Besides improved computation efficiency, parallelization may bring about innovation to many aspects of evolutionary algorithms. In this article, we focus on the effect of variable population size on accelerating evolution in the context of a parallel evolutionary algorithm. In nature it is observed that dramatic variations of population size have considerable impact on evolution. Interestingly, the property of variable population size here arises implicitly and naturally from the algorithm rather than through intentional design. To investigate the effect of variable population size in such a parallel algorithm, evolution dynamics, including fitness progression and population diversity variation, are analyzed. Further, this parallel algorithm is compared to a conventional fixed-population-size genetic algorithm. We observe that the dramatic changes in population size allow evolution to accelerate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. E. Alba, M. Tomassini, Parallelism and evolutionary algorithms. IEEE Trans. Evol. Comput. 6(5), 443–462 (2002)

    Article  Google Scholar 

  2. S.H. Ambrose, Late pleistocene human population bottlenecks, volcanicwinter, and the differentiation of modern humans. J. Human Evol. 34(6), 623–651 (1998)

    Article  Google Scholar 

  3. J. Arabas, Z. Michalewicz, J. Mulawka, GAVaPS—a genetic algorithm with varying population size, in Proceedings of IEEE Congress on Evolutionary Computation (CEC 1994) IEEE Press, 1994, pp. 73–78

  4. T. Back, A.E. Eiben, N.A.L. van der Vaart, An empirical study on GAs “without parameters”, in Proceedings of the 6th International Conference on Parallel Problem Solving from Nature (PPSN VI), vol. 1917 of LNCS (Springer, 2000), pp. 315–324

  5. W. Banzhaf, S. Harding, W.B. Langdon, G. Wilson, in Accelerating Genetic Programming Through Graphics Processing Units, ed. by, R.L. Riolo, T. Soule, B. Worzel. Genetic Programming Theory and Practice VI , Genetic and Evolutionary Computation, chapter 15 (Springer, Berlin, 2008), pp. 229–249

    Google Scholar 

  6. G. Cochran, H. Harpending, The 10,000 Year Explosion: How Civilization Accelerated Human Evolution (Basic Books, New York, NY, USA, 2009)

    Google Scholar 

  7. A.E. Eiben, E. Marchiori, V.A. Valkó, Evolutionary algorithms with on-the-fly population size adjustment, in Proceedings of the 8th International Conference on Parallel Problem Solving from Nature (PPSN VIII), vol. 3242 of LNCS (Springer, 2004), pp. 41–50

  8. C. Fernandes, A. Rosa, Self-regulated population size in evolutionary algorithms, in Proceedings of the 9th International Conference on Parallel Problem Solving from Nature (PPSN IX), vol. 4193 of LNCS (Springer, 2006), pp. 920–929

  9. R. A. Fisher, Genetical Theory of Natural Selection (Clarendon, Oxford, 1930)

    MATH  Google Scholar 

  10. R. Frankham, Relationship of genetic variation to population size in wildlife. Conserv. Biol. 10(6), 1500–1508 (1996)

    Article  Google Scholar 

  11. A. Gherman, P.E. Chen, T.M. Teslovich, P. Stankiewicz, M. Withers, C.S. Kashuk, A. Chakravarti, J.R. Lupski, D.J. Cutler, N. Katsanis, Population bottlenecks as a potential major shaping force of human genome architecture. PloS Genet. 3(3), 1223–1231 (2007)

    Google Scholar 

  12. D.E. Goldberg, Sizing populations for serial and parallel genetic algorithms, in Proceedings of the Third International Conference on Genetic algorithms, (San Francisco, CA, Morgan Kaufmann Publishers Inc., 1989), pp. 70–79

  13. D.E. Goldberg, K. Deb, J.H. Clark, Genetic algorithms, noise, and the sizing of populations. Complex Syst. 6(4), 333–362 (1992)

    MATH  Google Scholar 

  14. G.R. Harik, F.G. Lobo, A parameter-less genetic algorithm, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 1999) (Morgan Kaufmann, 1999), pp. 258–267

  15. D.L. Hartl, A.G. Clark, Principles of Population Genetics, 4th edn. (Sinauer Associates Inc. Publisher, Sunderland, MA, 2007)

    Google Scholar 

  16. J. Hawks, K. Hunley, S.-H. Lee, M. Wolpoff, Population bottlenecks and pleistocene human evolution. Mole. Biol. Evol. 17(1), 2–22 (2000)

    Google Scholar 

  17. J. Hawks, E.T. Wang, G.M. Cochran, H.C. Harpending, R.K. Moyzis, Recent acceleration of human adaptive evolution. Proc. Nat. Acad. Sci. 104(52), 20753–20758 (2007)

    Article  Google Scholar 

  18. T. Hu, W. Banzhaf, The role of population size in rate of evolution in genetic programming, in Proceedings of the 12th European Conference on Genetic Programming (EuroGP 2009), vol. 5481 of LNCS (Springer, 2009), pp. 85–96

  19. J. Kennedy, W. Spears, Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator, in Proceedings of the IEEE International Conference on Evolutionary Computation (IEEE, 1998), pp. 74–77

  20. V.K. Koumousis, C.P. Katsaras, A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance. IEEE Trans. Evol. Comput. 10(1), 19–28 (2006)

    Article  Google Scholar 

  21. F.G. Lobo, C.F. Lima, A review of adaptive population sizing schemes in genetic algorithms, in Proceedings of the 2005 Workshops on Genetic and Evolutionary Computation (GECCO 2005) (ACM, 2005), pp. 228–234

  22. R.W. Morrison, K.A.D. Jong, Measurement of population diversity, in Proceedings of the 3rd International Conference on Evolutionary Algorithm, vol. 2310 of LNCS (Springer, 2001), pp. 31–41

  23. M. Nei, T. Maruyama, R. Chakraborty, The bottleneck effect and genetic variability in populations. Evolution 29(1), 1–10 (1975)

    Article  Google Scholar 

  24. T. Ohta, Population size and rate of evolution. J. Mole. Evol. 1(4), 305–314 (1972)

    Article  Google Scholar 

  25. D. Schlierkamp-Voosen, H. Muhlenbein, Strategy adaptation by competing subpopulations, in Proceedings of the 3rd International Conference on Parallel Problem Solving from Nature (PPSN III), vol. 866 of LNCS (Springer, 1994), pp. 199–208

  26. R.E. Smith, Adaptively resizing populations: an algorithm and analysis, in Proceedings of the 5th International Conference on Genetic Algorithms (San Francisco, CA, USA Morgan Kaufmann Publishers Inc, 1993) , 653 pp.

  27. M.E. Soule, B.A. Wilcox, Conservation Biology. An evolutionary-ecological perspective. (Sinauer Associates, Sunderland, MA, USA, 1980)

    Google Scholar 

  28. M. Tomassini, L. Vanneschi, J. Cuendet, A new technique for dynamic size populations in genetic programming, in Proceedings of IEEE Congress on Evolutionary Computation (CEC 2004) (IEEE Press, 2004), pp. 486–493

  29. S. Wright, Evolution and the Genetics of Populations: Genetics and Biometric Foundations v. 4 (Variability Within and Among Natural Populations). (University of Chicago Press, Chicago, IL, 1984)

    Google Scholar 

Download references

Acknowledgments

W.B. acknowledges NSERC support under Discovery Grant RGPIN 283304-07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, T., Harding, S. & Banzhaf, W. Variable population size and evolution acceleration: a case study with a parallel evolutionary algorithm. Genet Program Evolvable Mach 11, 205–225 (2010). https://doi.org/10.1007/s10710-010-9105-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10710-010-9105-2

Keywords

Navigation