Abstract
In this paper we present HySAT, a bounded model checker for linear hybrid systems, incorporating a tight integration of a DPLL–based pseudo–Boolean SAT solver and a linear programming routine as core engine. In contrast to related tools like MathSAT, ICS, or CVC, our tool exploits the various optimizations that arise naturally in the bounded model checking context, e.g.isomorphic replication of learned conflict clauses or tailored decision strategies, and extends them to the hybrid domain. We demonstrate that those optimizations are crucial to the performance of the tool.
Similar content being viewed by others
References
Aloul FA, Ramani A, Markov IL, Sakallah KA (2002) Generic ILP versus specialized 0–1 ILP: An update. In: Proceedings of the ACM/IEEE International Conference Computer-Aided Design (ICCAD), pp 450–457
Audemard G, Bertoli P, Cimatti A, Kornilowics A, Sebastiani R (2002) A SAT-based approach for solving formulas over boolean and linear mathematical propositions. In: Voronkov A (ed) Proceedings of the 18th International Conference on Automated Deduction, vol 2392. Lecture Notes in Artificial Intelligence. Springer-Verlag, pp 193–208
Audemard G, Bozzano M, Cimatti A, Sebastiani R (2004) Verifying industrial hybrid systems with MathSAT. ENTCS 89(4)
Baptista L, Lynce I, Marques-Silva J (2001) Complete search restart strategies for satisfiability. In: Proceedings of the IJCAI′01 workshop on stochastic search algorithms (IJCAI-SSA)
Barrett C, Dill D, Stump A (2002) Checking satisfiability of first-order formulas by incremental translation to SAT. In: Proceedings of the 14th international conference on computer-aided verification
Barth P (1995) A Davis-Putnam based enumeration algorithm for linear pseudo-boolean optimization. Technical Report MPI-I-95-2-003, Max-Planck-Institut für Informatik, Saarbrücken, Germany
Bemporad A, Morari M (1999) Verification of hybrid systems via mathematical programming. In: Vaandrager FW, van Schuppen JH (eds) Hybrid systems: Computation and control (HSCC′99), vol 1569. Lecture Notes in Computer Science, Springer-Verlag, pp 31–45
Biere A, Cimatti A, Zhu Y (1999) Symbolic model checking without BDDs. In: TACAS′99, vol 1579. Lecture Notes in Computer Science, Springer-Verlag
Bik A, Wijshoff H (1994) Implementation of Fourier-Motzkin elimination. Technical Report TR94-42, Dpt. of Computer Sceince, University of Leiden, The Netherlands
Chai D, Kuehlmann A (2003) A fast pseudo-boolean constraint solver. In: Proceedings of the 40th Design Automation Conference (DAC 2003). ACM, Anaheim, California, USA, pp 830–835
Chinneck JW (1997) Finding a useful subset of constraints for analysis in an infeasible linear program. INFORMS J Comput 9(2):164–174
Chinneck JW, Dravnieks EW (1991) Locating minimal infeasible constraint sets in linear programs. ORSA J Comput 3(2):157–168
Davis M, Logemann G, Loveland D (1962) A machine program for theorem proving. Commun ACM 5:394–397
de Moura L, Owre S, Ruess H, Rushby J, Shankar N (2004) The ICS decision procedures for embedded deduction. In: Proceedings of the 2nd International Joint Conference on Automated Reasoning (IJCAR), vol 3097. Lecture Notes in Computer Science. Springer-Verlag, Cork, Ireland, pp 218–222
de Moura L, Owre S, Rueß H, Rushby J, Shankar N, Sorea M, Tiwari A (2004) SAL 2. In: Alur R, Peled D (eds) Computer-aided verification, CAV 2004, vol 3114. Lecture Notes in Computer Science. Springer-Verlag, Boston, MA, pp 496–500
de Moura L, Rueß H, Sorea M (2002) Lazy theorem proving for bounded model checking over infinite domains. In: Proceedings of the 18th international conference on automated deduction, vol 2392. Lecture Notes in Computer Science. Springer-Verlag, pp 438–455
Enslev J, Nielsen A-S, Fränzle M, Hansen MR (2005) Bounded model construction for duration calculus. In: Jones N, et al (eds) Proceedings of the 17th Nordic Workshop on Programming Theory (NWPT 05). Københavns Universitet
Fourier J (1826) Solution dùne qestion particulière du calcul des inégalités. Nouveau Bulletin par la Société Philomathique des Paris pp 99–100
Fränzle M, Herde C (2003) Efficient SAT engines for concise logics: Accelerating proof search for zero-one linear constraint systems. In: Vardi M, Voronkov A (eds) Logic for programming, artificial intelligence, and reasoning (LPAR 2003), vol 2850. Lecture Notes in Artificial Intelligence, Springer-Verlag
Fränzle M, Herde C (2003) Efficient SAT engines for concise logics: Accelerating proof search for zero-one linear constraint systems. In: Moshe AV, Vardi Y (eds) Logic for programming, artificial intelligence and reasoning (LPAR 2003), vol 2850. LNCS, subseries LNAI, Springer Verlag, pp 302–316
Gleeson J, Ryan J (1990) Identifying minimally infeasible subsystems of inequalities. ORSA J Comput 2(1):61–63
Groote JF, Koorn JWC, van Vlijmen SFM (1995) The safety guaranteeing system at station hoorn-kersenboogerd. In: Compass ′95: 10th annual conference on computer assurance. National Institute of Standards and Technology, Gaithersburg, Maryland, pp 57–68
Hehner ECR (1984) Predicative programming. Commun ACM 27:134–151
Henzinger TA, Ho P-H, Wong-Toi H (1995) HyTech: The next generation. In: Proceedings of the 16th Annual IEEE Real-time Systems Symposium (RTSS 1995). IEEE Computer Society Press, pp 56–65
Henzinger TA, Kopke PW, Puri A, Varaiya P (1995) what's decidable about hybrid automata. In: Proceedings of the 27th Annual ACM symposium on the theory of computing. ACM, pp 373–382
Jin H, Somenzi F (2004) An incremental algorithm to check satisfiability for bounded model checking. In: Biere A, Strichman O (eds) Preliminary proceeding of BMC′04, ETH Zürich
Marques-Silva JP (1999) The impact of branching heuristics in propositional satisfiability algorithms. In: Proceedings of the 9th Portuguese Conference on Artificial Intelligence (EPIA).
Marques-Silva JP, Sakallah KA (1999) GRASP: A search algorithm for propositional satisfiability. IEEE Trans Comput 48(5):506–521
Moskewicz MW, Madigan CF, Zhao Y, Zhang L, Malik S (2001) Chaff: engineering an efficient SAT solver. In: Proceedings of the 38th Design Automation Conference (DAC′01).
Motzkin TS (1936) Beiträge zur Theorie der linearen Ungleichungen. Doctoral dissertation, Universität Zürich
Nonnengart A, Weidenbach C (1999) Computing small clause normal forms. In: Robinson A, Voronkov A (eds) Handbook of automated reasoning, Elsevier Science B.V
Pfetsch ME (2002) The maximum feasible subsystem problem and vertex-facet incidences of polyhedra. Doctoral dissertation, TU Berlin
Ratschan S (2002) Continuous first-order constraint satisfaction with equality and d isequality constraints. In: van Hentenryck P (ed) Proceedings of the 8th international conference on principles and practice of constraint programming, vol 2470. Lecture Notes in Computer Science, Springer, pp 680–685
Strichman O (2000) Tuning SAT checkers for bounded model checking. In: Emerson EA, Sistla AP (eds) Computer aided verification (CAV 2000), vol 1855. Lecture Notes in Computer Science, Springer-Verlag, pp 480–494
Torrisi FD (2003) Modeling and reach-set computation for analysis and optimal control of discrete hybrid automata. Doctoral dissertation, ETH Zürich
Tseitin G (1968) On the complexity of derivations in propositional calculus. In: Slisenko A (ed) Studies in constructive mathematics and mathematical logics
Warners JP (1998) A linear-time transformation of linear inequalities into conjunctive normal form. Inf Process Lett 68(2):63–69
Whittemore J, Kim J, Sakallah K (2001) SATIRE: A new incremental satisfiability engine. In: Proceedings of the Design Automation Conference (DAC 2001). Las Vegas, Nevada, USA, pp 542–545
Wolfman SA, Weld DS (1999) The LPSAT engine & its application to resource planning. In: Dean T (ed) Proceeding of the 16th International Joint Conference on i Artificial Intelligence. Morgan Kaufmann Publishers, pp 310–315
Zhang L, Madigan CF, Moskewicz MW, Malik S (2001) Efficient conflict driven learning in a Boolean satisfiability solver. In: Proceeding of the International Conference on Computer-Aided Design (ICCAD′01), pp 279–285
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fränzle, M., Herde, C. HySAT: An efficient proof engine for bounded model checking of hybrid systems. Form Method Syst Des 30, 179–198 (2007). https://doi.org/10.1007/s10703-006-0031-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10703-006-0031-0