Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The dual simplex method and sensitivity analysis for fuzzy linear programming with symmetric trapezoidal numbers

  • Published:
Fuzzy Optimization and Decision Making Aims and scope Submit manuscript

Abstract

In this paper, we first extend the dual simplex method to a type of fuzzy linear programming problem involving symmetric trapezoidal fuzzy numbers. The results obtained lead to a solution for fuzzy linear programming problems that does not require their conversion into crisp linear programming problems. We then study the ranges of values we can achieve so that when changes to the data of the problem are introduced, the fuzzy optimal solution remains invariant. Finally, we obtain the optimal value function with fuzzy coefficients in each case, and the results are described by means of numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bector C. R., Chandra S. (2002) On duality in linear programming under fuzzy environment. Fuzzy Sets and Systems 125: 317–325

    Article  MathSciNet  MATH  Google Scholar 

  • Bellman R. E., Zadeh L. A. (1970) Decision making in a fuzzy environment. Management Science 17: 141–164

    Article  MathSciNet  Google Scholar 

  • Campos L., Verdegay J. L. (1989) Linear programming problems and ranking of fuzzy numbers. Fuzzy Sets and Systems 32: 1–11

    Article  MathSciNet  MATH  Google Scholar 

  • Delgado M., Verdegay J. L., Vila M. A. (1989) A general model for fuzzy linear programming. Fuzzy Sets and Systems 29: 21–29

    Article  MathSciNet  MATH  Google Scholar 

  • Fortemps P., Roubens M. (1996) Ranking and defuzzification methods based on area compensation. Fuzzy Sets and Systems 82: 319–330

    Article  MathSciNet  MATH  Google Scholar 

  • Fuller R. (1989) On stability in fuzzy linear programming problems. Fuzzy Sets and Systems 30: 339–344

    Article  MathSciNet  MATH  Google Scholar 

  • Ganesan K., Veeramani P. (2006) Fuzzy linear programs with trapezoidal fuzzy numbers. Annals of Operations Research 143: 305–315

    Article  MATH  Google Scholar 

  • Hamacher H., Leberling H., Zimmermann H.-J. (1978) Sensitivity analysis in fuzzy linear programming. Fuzzy Sets and Systems 1: 269–281

    Article  MathSciNet  MATH  Google Scholar 

  • Mhdavi-Amiri N., Nasseri S.H. (2007) Duality results and a dual simplex method for linear programming problems with trapezoidal fuzzy variables. Fuzzy Sets and Systems 158: 1961–1978

    Article  MathSciNet  Google Scholar 

  • Maleki H. R. (2002) Ranking functions and their applications to fuzzy linear programming. Far East Journal of Mathematical Sciences 4: 283–301

    MathSciNet  MATH  Google Scholar 

  • Nasseri S. H., Ebrahimnejad A., Mizuno S. (2010) Duality in fuzzy linear programming with symmetric trapezoidal numbers. Applications and Applied Mathematics: An International Journal 5((10): 1469–1484

    MathSciNet  Google Scholar 

  • Rodder, W., & Zimmermann, H. J. (1980). Duality in fuzzy linear programming. In A. V. Fiaco & K. O. Kortanek (Eds.), Proceedings of international symposium on extremal methods and systems analysis. University of Texas at Austin (pp. 415–427). Berlin, Heidelberg, New York.

  • Tanaka H., Okuda T., Asai K. (1973) On fuzzy mathematical programming. Journal Cybernetics and Systems 3: 37–46

    Article  MathSciNet  MATH  Google Scholar 

  • Tanaka H., Asai K. (1984) Fuzzy linear programming problems with fuzzy numbers. Fuzzy Sets and Systems 13: 1–10

    Article  MathSciNet  MATH  Google Scholar 

  • Vasant P. (2003) Application of fuzzy linear programming in production planning. Fuzzy Optimization ans Decision Making 3: 229–241

    Article  MathSciNet  Google Scholar 

  • Verdegay J.L. (1984) A dual approach to solve the fuzzy linear programming problems. Fuzzy Sets and Systems 14: 131–141

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X., Kerre E. (2001) Reasonable properties for the ordering of fuzzy quantities (2 part). Fuzzy Sets and Systems 118: 375–405

    Article  MathSciNet  MATH  Google Scholar 

  • Zimmermann H.J. (1978) Fuzzy programming and linear programming with several objective functions. Fuzzy Set and Systems 1: 45–55

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José-Luis Verdegay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kheirfam, B., Verdegay, JL. The dual simplex method and sensitivity analysis for fuzzy linear programming with symmetric trapezoidal numbers. Fuzzy Optim Decis Making 12, 171–189 (2013). https://doi.org/10.1007/s10700-012-9152-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10700-012-9152-7

Keywords

Navigation