Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Exact and heuristic procedures for solving the fuzzy portfolio selection problem

  • Published:
Fuzzy Optimization and Decision Making Aims and scope Submit manuscript

Abstract

We propose a fuzzy model for the portfolio selection problem which takes into account the vagueness of the investor’s preferences regarding the assumed risk. We also describe an exact method for solving it as well as a hybrid meta-heuristic procedure which is more adequate for medium and large-sized problems or in cases in which a quick solution is needed. As an application, we solve several problems based on data from the IBEX35 index and the Spanish Stock Exchange Interconnection System.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aarts E., Korst J. (1990) Simulated annealing and Boltzmann machines: A stochastic approach combinatorial to optimization and neural computing. John Wiley and Sons, New York

    Google Scholar 

  • Arenas Parra M., Bilbao Terol A., Rodríguez Uría M. V. (2001) A fuzzy goal programming approach to portfolio selection. European Journal of Operational Research 133: 287–297

    Article  MathSciNet  MATH  Google Scholar 

  • Blum C., Blesa M. J., Roli A., Sampels M. (Eds.). (2008) Hybrid metaheuristics: An emerging approach to optimization. Studies in computational intelligence 114. Springer, Berlin

    Google Scholar 

  • Canós M. J., Ivorra C., Liern V. (2001) The fuzzy p-median problem: A global analysis of the solutions. European Journal of Operational Research 130: 430–436

    Article  MATH  Google Scholar 

  • Canós M. J., Ivorra C., Liern V. (2008) Marginal analysis for the fuzzy p-median problem. European Journal of Operational Research 130: 430–436

    Article  Google Scholar 

  • Cadenas M., Canós M. J., Garrido M. C., Ivorra C., Liern V. (2011) Soft-computing based heuristics for location on networks: The p-median problem. Applied Soft Computing 11: 1540–1547

    Article  Google Scholar 

  • Cadenas, J. M., Canós, M. J., Carrillo, J. V., Garrido, M. C., Ivorra, C., & Liern, V. (2008). A hybrid algorithm for the fuzzy p-median problem. IADIS International conference intelligent systems and agents, Amsterdam (The Netherlands).

  • Fama E. F. (1977) Foundations of Finance. Basil Blackwell, Oxford

    Google Scholar 

  • Glover F. (1986) Future paths for integer programming and link to artificial intelligence. Computer and Operations Research 5: 533–549

    Article  MathSciNet  Google Scholar 

  • Glover F., Kochenberger G. (2003) Handbook of metaheuristics. Kluwer, The Netherlands

    MATH  Google Scholar 

  • Inuiguchi M., Ramík J. (2000) Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets and Systems 111: 3–28

    Article  MathSciNet  MATH  Google Scholar 

  • Inuiguchi M., Tanino T. (2000) Portfolio selection under independent possibilistic information. Fuzzy Sets and Systems 115: 83–92

    Article  MathSciNet  MATH  Google Scholar 

  • Kirkpatrick S., Gelat C. D., Vecchi M. P. Jr. (1983) Optimization by simulated annealing. Science 220: 671–680

    Article  MathSciNet  MATH  Google Scholar 

  • Konno H., Yamazaki H. (1991) Mean-absolute deviation portfolio optimization model and its applications Tokyo Stock Market. Management Science 37: 519–531

    Article  Google Scholar 

  • Konno H., Wijayanayake A. (2001) Portfolio optimization problem under concave transaction costs and minimal transactions unit constraints. Mathematical Programming 89: 233–250

    Article  MathSciNet  MATH  Google Scholar 

  • Lai Y. J., Hwang C. L. (1992) Fuzzy mathematical programming: Theory and applications. Springer, Berlin

    MATH  Google Scholar 

  • León T., Liern V. (2001) A fuzzy method to repair infeasibility in linearly constrained problems. Fuzzy Sets and Systems 122: 237–243

    Article  MathSciNet  MATH  Google Scholar 

  • León T., Liern V., Vercher E. (2002) Viability of infeasible portfolio selection problems: A fuzzy approach. European Journal of Operational Research 139: 178–189

    Article  MATH  Google Scholar 

  • Markowitz H. M. (1952) Portfolio selection. Journal of Finance 7: 79–91

    Article  Google Scholar 

  • Markowitz H. M. (1959) Portfolio selection: Efficient diversification of investments. John Wiley, New York

    Google Scholar 

  • Mitchell M. (1996) An introduction to genetic algorithms. The MIT Press, London

    Google Scholar 

  • Reeves, C. R. (2002). Genetic algorithms. In F. Glover & G. A. Kochenberger (Eds.), Handbook of metaheuristics, international series in operations research & management science 57, Kluwer, pp. 62–77.

  • Sharpe W. F. (1970) Portfolio theory and capital market. McGraw-Hill, New York

    Google Scholar 

  • Speranza M. G. (1993) Linear programming model for portfolio optimization. Finance 14: 107–123

    Google Scholar 

  • Steuer R. E., Qi Y., Hirschberger M. (2006) Portfolio optimization: New capabilities and future methods. Zeitschrift für Betriebswirtschaft 2: 199–219

    Article  Google Scholar 

  • Tanaka H., Guo P., Türksen I. B. (2000) Portfolio selection based on fuzzy probabilities and possibility distributions. Fuzzy Sets and Systems 3: 387–397

    Article  Google Scholar 

  • Vercher E., Bermúdez J. D., Segura J. V. (2007) Fuzzy portfolio optimization under downside risk measures. Fuzzy Sets and Systems 158: 769–782

    Article  MathSciNet  MATH  Google Scholar 

  • Wang S., Zhu S. (2002) On fuzzy portfolio selection problems. Fuzzy Optimization and Decision Making 1: 361–377

    Article  MathSciNet  MATH  Google Scholar 

  • Watada J. (1997) Fuzzy portfolio selection and its applications to decision making. Tatra Mountains Mathematical Publications 13: 219–248

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Liern.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cadenas, J.M., Carrillo, J.V., Garrido, M.C. et al. Exact and heuristic procedures for solving the fuzzy portfolio selection problem. Fuzzy Optim Decis Making 11, 29–46 (2012). https://doi.org/10.1007/s10700-011-9114-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10700-011-9114-5

Keywords

Navigation