Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A survey on the computation of representative trajectories

  • Review
  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

The process of computing a representative trajectory for a set of raw (or even semantically enriched) trajectories is an attractive solution to minimize several challenges related to trajectory management, like trajectory data integration or trajectory pattern analysis. We identify two main strategies for accomplishing such a process (trajectory data summarization and trajectory data fusion), but we argue that this subject is still an open issue, and we did not find a survey with such a focus. In order to fill this literature gap, this paper presents a survey that analyzes several issues around the two aforementioned strategies, like the type of representative data computed by each approach, the dimensions that are considered by the approach (spatial, temporal, and semantics), the accomplished methods of the proposed processes, and how the process is evaluated. Additionally, we compare these two research areas (trajectory summarization and trajectory fusion) in literature to analyze their relationship. Finally, some open issues related to this subject are also pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The selection problem consists of selecting the most appropriate elements of a predefined set of elements, i.e., the best ones from a given collection [23].

References

  1. dos Santos Mello R, Bogorny V, Alvares LO, Santana LHZ, Ferrero CA, Frozza AA, Schreiner GA, Renso C (2019) MASTER: A multiple aspect view on trajectories. Trans GIS 23(4):805–822

    Article  Google Scholar 

  2. Richly K (2018) A survey on trajectory data management for hybrid transactional and analytical workloads. In: 2018 IEEE International conference on big data (Big Data), pp 562–569. IEEE, Seattle, United States

  3. Su H, Liu S, Zheng B, Zhou X, Zheng K (2020) A survey of trajectory distance measures and performance evaluation. VLDB J 29(1):3–32

    Article  Google Scholar 

  4. Wang S, Bao Z, Culpepper JS, Cong G (2021) A survey on trajectory data management, analytics, and learning. ACM Comput Surv 54(2)

  5. Feng Z, Zhu Y (2016) A survey on trajectory data mining: Techniques and applications. IEEE Access 4:2056–2067

    Article  Google Scholar 

  6. Georgiou H, Karagiorgou S, Kontoulis Y, Pelekis N, Petrou P, Scarlatti D, Theodoridis Y (2018) Moving objects analytics: Survey on future location & trajectory prediction methods. arXiv: abs/1807.04639

  7. Bian J, Tian D, Tang Y, Tao D (2018) A survey on trajectory clustering analysis. CoRR arXiv: 1802.06971

  8. Leite da Silva C, May Petry L, Bogorny V (2019) A survey and comparison of trajectory classification methods. In: 2019 8th Brazilian conference on intelligent systems (BRACIS), pp 788–793. IEEE, Brazil

  9. Fiore M, Katsikouli P, Zavou E, Cunche M, Fessant F, Hello DL, Aïvodji UM, Olivier B, Quertier T, Stanica R (2019) Privacy of trajectory micro-data : a survey. ArXiv: 1903.12211

  10. Ahmed SA, Dogra DP, Kar S, Roy PP (2019) Trajectory-based surveillance analysis: A survey. IEEE Trans Circuits Syst Video Technol 29(7):1985–1997

    Article  Google Scholar 

  11. Esteban J, Starr A, Willetts R, Hannah P, Bryanston-Cross P (2005) A review of data fusion models and architectures: towards engineering guidelines. Neural Comput Appl 14(4):273–281

    Article  Google Scholar 

  12. Hall DL, Llinas J (1997) An introduction to multisensor data fusion. Proc IEEE 85(1):6–23

    Article  Google Scholar 

  13. Doan A, Halevy A, Ives Z (2012) Principles of Data Integration. Morgan Kaufmann, Burlington, United States

    Google Scholar 

  14. Zhao H, Ram S (2007) Combining schema and instance information for integrating heterogeneous data sources. Data Knowl Eng 61(2):281–303

    Article  Google Scholar 

  15. Dong XL, Srivastava D (2015) Big Data Integration vol 7, pp 1–198. Morgan & Claypool Publishers, Williston, United States

  16. Sazontev V (2018) Methods for big data integration in distributed computation environments. In: XX International conference on data analytics and management in data intensive domains (DAMDID/RCDL 2018), Moscow, Russia, pp 238–244

  17. Ma B, Jiang T, Zhou X, Zhao F, Yang Y (2017) A novel data integration framework based on unified concept model. IEEE Access 5:5713–5722

    Article  Google Scholar 

  18. Taleb I, Serhani MA, Bouhaddioui C, Dssouli R (2021) Big data quality framework: a holistic approach to continuous quality management. J Big Data 8(1):1–41

    Article  Google Scholar 

  19. Hesabi ZR, Tari Z, Goscinski A, Fahad A, Khalil I, Queiroz C (2015) Data summarization techniques for big data–a survey. In: Khan SU, Zomaya AY (eds) Handbook on Data Centers. Springer, New York, United States, pp 1109–1152

    Chapter  Google Scholar 

  20. Chandola V, Kumar V (2007) Summarization-compressing data into an informative representation. Knowl Inf Syst 12:355–378

    Article  Google Scholar 

  21. Ahmed M (2019) Data summarization: a survey. Knowl Inf Syst 58(2):249–273

    Article  Google Scholar 

  22. Blelloch GE (2013) Introduction to data compression*. Computer Science Department, Carnegie Mellon University, 55

  23. Desu MM (1970) A selection problem. Ann Math Stat 41(5):1596–1603

    Article  MathSciNet  Google Scholar 

  24. Nakamura EF, Loureiro AA, Frery AC (2007) Information fusion for wireless sensor networks: Methods, models, and classifications. ACM Comput Surv (CSUR) 39(3):9

    Article  Google Scholar 

  25. Daoui M, Lalam M, Hamrioui S, Djamah B, Nouali D (2012) Circuit of data aggregation on the fly for wsn. Sens Transd 142(7):44

    Google Scholar 

  26. Amigo D, Sánchez Pedroche D, García J, Molina JM (2021) Review and classification of trajectory summarisation algorithms: From compression to segmentation. Int J Distrib Sens Netw 17(10):15501477211050728

    Article  Google Scholar 

  27. Martinez D, Cristobal S, Belkoura S (2018) Smart data fusion: Probabilistic record linkage adapted to merge two trajectories from different sources. Proceedings of the SESAR Innovation Days],(Dec 2018)

  28. Gao C, Zhao Y, Wu R, Yang Q, Shao J (2019) Semantic trajectory compression via multi-resolution synchronization-based clustering. Knowl-Based Syst 174:177–193

    Article  Google Scholar 

  29. Lee J-G, Han J, Whang K-Y (2007) Trajectory clustering: A partition-and-group framework. In: Proceedings of the 2007 ACM SIGMOD international conference on management of data. SIGMOD ’07, pp 593–604. Association for Computing Machinery (ACM), New York, United States

  30. Panagiotakis C, Pelekis N, Kopanakis I, Ramasso E, Theodoridis Y (2012) Segmentation and sampling of moving object trajectories based on representativeness. IEEE Trans Knowl Data Eng 24(7):1328–1343

    Article  Google Scholar 

  31. Wang H, Su H, Zheng K, Sadiq S, Zhou X (2013) An effectiveness study on trajectory similarity measures. Proceedings of the twenty-fourth Australasian database conference 137, 13–22. Australian Computer Society, Inc

  32. Buchin K, Buchin M, Van Kreveld M, Löffler M, Silveira RI, Wenk C, Wiratma L (2013) Median trajectories. Algorithmica 66(3):595–614

    Article  MathSciNet  Google Scholar 

  33. Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. In: Proceedings of the 3rd international conference on knowledge discovery and data mining. AAAIWS’94, pp 359–370. AAAI Press, Seattle, WA

  34. Vlachos M, Kollios G, Gunopulos D (2002) Discovering similar multidimensional trajectories. In: Proceedings 18th international conference on data engineering, pp 673–684. IEEE, San Jose, United States

  35. Chen L, Özsu MT, Oria V (2005) Robust and fast similarity search for moving object trajectories. In: Proceedings of the 2005 ACM SIGMOD international conference on management of data. SIGMOD ’05, pp. 491–502. Association for Computing Machinery (ACM), Baltimore, Maryland

  36. Peixoto DA (2018) A distributed in-memory database system for large-scale spatial-temporal trajectory data. PhD thesis, University of Queensland, Australia. Doctor of Philosophy - School of Information Technology and Electrical Engineering

  37. Buchin M, Kilgus B, Kölzsch A (2019) Group diagrams for representing trajectories. Int J Geogr Inf Sci 34(12):2401–2433

    Article  Google Scholar 

  38. Eiter T, Mannila H (1994) Computing discrete frechet distance. Technical report cd-tr 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna - Austria

  39. Ying X, Xu Z, Yin WG (2009) Cluster-based congestion outlier detection method on trajectory data. In: 2009 Sixth international conference on fuzzy systems and knowledge discovery, vol. 5, pp. 243–247. IEEE

  40. Frentzos E, Gratsias K, Pelekis N, Theodoridis Y (2007) Algorithms for nearest neighbor search on moving object trajectories. Geoinformatica 11:159–193

    Article  Google Scholar 

  41. Furtado AS, Alvares LOC, Pelekis N, Theodoridis Y, Bogorny V (2018) Unveiling movement uncertainty for robust trajectory similarity analysis. Int J Geogr Inf Sci 32(1):140–168

    Article  Google Scholar 

  42. Furtado AS, Kopanaki D, Alvares LO, Bogorny V (2016) Multidimensional similarity measuring for semantic trajectories. Trans GIS 20(2):280–298

    Article  Google Scholar 

  43. Lehmann AL, Alvares LO, Bogorny V (2019) SMSM: a similarity measure for trajectory stops and moves. Int J Geogr Inf Sci 33(9):1847–1872

    Article  Google Scholar 

  44. Petry LM, Ferrero CA, Alvares LO, Renso C, Bogorny V (2019) Towards semantic-aware multiple-aspect trajectory similarity measuring. Trans GIS 23(5):960–975

    Article  Google Scholar 

  45. Xie P, Li T, Liu J, Du S, Yang X, Zhang J (2020) Urban flow prediction from spatiotemporal data using machine learning: A survey. Inf Fus 59:1–12

    Article  Google Scholar 

  46. de Almeida DR, de Souza Baptista C, de Andrade FG, Soares A (2020) A survey on big data for trajectory analytics. ISPRS Int J Geo-Information 9(2):88

    Article  Google Scholar 

  47. Kong X, Li M, Ma K, Tian K, Wang M, Ning Z, Xia F (2018) Big trajectory data: A survey of applications and services. IEEE Access 6:58295–58306

    Article  Google Scholar 

  48. Ayhan S, Samet H (2015) Diclerge: Divide-cluster-merge framework for clustering aircraft trajectories. In: Proceedings of the 8th ACM SIGSPATIAL international workshop on computational transportation science, pp 7–14

  49. Etienne L, Devogele T, Buchin M, McArdle G (2016) Trajectory box plot: A new pattern to summarize movements. Int J Geogr Inf Sci 30(5):835–853

    Article  Google Scholar 

  50. Borkowski P (2017) The ship movement trajectory prediction algorithm using navigational data fusion. Sensors 17(6):1432

    Article  Google Scholar 

  51. Agarwal PK, Fox K, Munagala K, Nath A, Pan J, Taylor E (2018) Subtrajectory clustering: Models and algorithms. In: Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI symposium on principles of database systems, pp 75–87

  52. Seep J, Vahrenhold J (2019) Inferring semantically enriched representative trajectories. In: Proceedings of the 1st ACM SIGSPATIAL international workshop on computing with multifaceted movement data. MOVE’19, pp 1–4. Association for Computing Machinery, New York, United States

  53. Zheng C, Peng Q, Xu X (2020) Heterogenous multi-source fusion for ship trajectory complement and prediction with sequence modeling. In: 2020 IEEE Fifth international conference on data science in cyberspace (DSC), pp 15–21. IEEE

  54. Rodriguez DF, Ortiz AE (2020) Detecting representative trajectories in moving objects databases from clusters. In: International conference on information technology & systems, pp 141–151. Springer

  55. Li H (2021) Typical trajectory extraction method for ships based on ais data and trajectory clustering. In: 2021 2nd International conference on artificial intelligence and information systems, pp 1–8

  56. Machado VL, Mello RdS, Bogorny V (2022) A method for summarizing trajectories with multiple aspects. In: International conference on database and expert systems applications, pp 433–446. Springer

  57. Ruan S, Li R, Bao J, He T, Zheng Y (2018) Cloudtp: A cloud-based flexible trajectory preprocessing framework. In: 2018 IEEE 34th international conference on data engineering (ICDE), pp 1601–1604. IEEE

  58. Lian J, Zhang L (2018) One-month beijing taxi gps trajectory dataset with taxi ids and vehicle status. In: Proceedings of the first workshop on data acquisition to analysis, pp 3–4

  59. Yang D, Zhang D, Zheng VW, Yu Z (2015) Modeling user activity preference by leveraging user spatial temporal characteristics in LBSNs. IEEE Trans Syst Man Cybern: Syst 45(1):129–142

    Article  Google Scholar 

  60. Santipantakis GM, Glenis A, Patroumpas K, Vlachou A, Doulkeridis C, Vouros GA, Pelekis N, Theodoridis Y (2018) Spartan: Semantic integration of big spatio-temporal data from streaming and archival sources. Future Gener Comput Syst 110:540–555

    Article  Google Scholar 

Download references

Funding

This work has been partially supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC) by the MATCH Project (Co-financing of H2020 Projects - Grant 2018TR 1266), as well as the European Union’s Horizon 2020 research and innovation programme under GA N. 777695 (EU Project MASTER - Multiple ASpects TrajEctoRy management and analysis). The views and opinions expressed in this article are the authors’ sole responsibility and do not necessarily reflect the views of the European Commission.

Author information

Authors and Affiliations

Authors

Contributions

Vanessa Lago Machado and Ronaldo dos Santos Mello wrote the main manuscript text. All authors had reviewed and approved the manuscript and contributed significantly to the paper.

Corresponding author

Correspondence to Vanessa Lago Machado.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, V.L., Mello, R.d.S., Bogorny, V. et al. A survey on the computation of representative trajectories. Geoinformatica 28, 605–630 (2024). https://doi.org/10.1007/s10707-024-00514-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-024-00514-y

Keywords

Navigation