Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

QTL mapping for salt tolerance at seedling stage in the interspecific cross of Gossypium tomentosum with Gossypium hirsutum

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Soil salinity negatively affects growth and development as well as yield and fiber quality of cotton. The identification of quantitative trait loci (QTLs) for traits related to salt tolerance could facilitate the development of cotton cultivars with salt tolerance. The objective of this study was to map QTLs for salt tolerance in an F2:3 population derived from an interspecific cross between an upland cotton, CRI-12 (G09091801-2), of upland cotton (Gossypium hirsutum) and an accession, AD3-00 (P0601211), of wild cotton Gossypium tomentosum. 1295 simple sequence repeat markers, which amplified 1342 loci, distributed on 26 chromosomes and covered 3328.24 cM with an average inter-marker distance of 3.0 cM, were utilized for molecular genotyping. Salt tolerance was evaluated in a hydroponic at a young seedling stage for 2 weeks at 150 mM NaCl concentration in three environments. Mapping of QTLs related to salt tolerance was carried out on 7 traits by composite interval mapping using Windows QTL Cartographer 2.5. Eleven consistent QTLs were detected on 8 chromosomes (9, 11, 15, 16, 21, 23, 24 and 26) in at least two environments. qRL-Chr16-1 for RL was a major QTL explaining the Phenotypic variance of 11.97 and 18.44 % in two environments. Of the 11 QTLs, 10 were located on the D subgenome, indicating that genes responsible for salt tolerance in the allotetraploid cotton AD genome were mainly derived from the D subgenome. The information derived from these studies may be useful in facilitating breeding of salt tolerant cotton lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ashraf M, Foolad MR (2013) Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Plant Breed 132:10–20. doi:10.1111/pbr.12000

    Article  Google Scholar 

  • Azhar FM, McNeilly T (1988) The genetic basis of variation for salt tolerance in Sorghum bicolor (L.) Moench seedlings. Plant Breed 101:114–121. doi:10.1111/j.1439-0523.1988.tb00275.x

    Article  CAS  Google Scholar 

  • Bhatti MA, Azhar FM (2002) Salt tolerance of nine Gossypium hirsutum L. varieties to NaCl salinity at early stage of plant development. Int J Agric Biol 4:544–546

    Google Scholar 

  • Chee P, Draye X, Jiang C-X et al (2005) Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: I. Fiber elongation. Theor Appl Genet 111:757–763. doi:10.1007/s00122-005-2063-z

    Article  CAS  PubMed  Google Scholar 

  • Cho SK, Ryu MY, Song C et al (2008) Arabidopsis PUB22 and PUB23 are homologous U-Box E3 ubiquitin ligases that play combinatory roles in response to drought stress. Plant Cell 20:1899–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeJoode DR, Wendel JF (1992) Genetic diversity and origin of the hawaiian islands cotton, Gossypium tomentosum. Am J Bot 79:1311–1319

    Article  Google Scholar 

  • DeVicente MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585–596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein E, Norlyn JD (1977) Seawater-based crop production: a feasibility study. Science 197:249–251. doi:10.1126/science.197.4300.249

    Article  CAS  PubMed  Google Scholar 

  • Foolad MR, Jones RA (1993) Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis. Theor Appl Genet Int J Plant Breed Res 87:184–192. doi:10.1007/BF00223763

    CAS  Google Scholar 

  • Fryxell PA (1979) The natural history of cotton tribe (Malvaceae, Tribe Gossypieae). Texas A&M University Press, College station

    Google Scholar 

  • Genc Y, MCdonald GK, Tester M (2007) Reassessment of tissue Na + concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Environ 30:1486–1498. doi:10.1111/j.1365-3040.2007.01726.x

    Article  CAS  PubMed  Google Scholar 

  • Genc Y, Oldach K, Verbyla A et al (2010) Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. TAG Theor Appl Genet 121:877–894. doi:10.1007/s00122-010-1357-y

    Article  CAS  PubMed  Google Scholar 

  • Gorham J, Bridges J (1995) Effects of calcium on growth and leaf ion concentrations of Gossypium hirsutum grown in saline hydroponic culture. Plant Soil 176:219–227

    Article  CAS  Google Scholar 

  • Gossett DR, Millhollon EP, Caldwell WD, Mundy S (1991) Isozyme variation among salt tolerant and salt sensitive varieties of cotton. Proc Beltwide Cotton Res Conf Natl Cotton Council, Memphis, pp 556–559

    Google Scholar 

  • Grover CE, Zhu X, Grupp KK et al (2015) Molecular confirmation of species status for the allopolyploid cotton species, Gossypium ekmanianum Wittmack. Genet Resour Crop Evol 62:103–114. doi:10.1007/s10722-014-0138-x

    Article  Google Scholar 

  • Hallauer AR, Carena MJ, Miranda Filho JB (1990) Quantitative genetics in maize breeding. Crop Res 23:78–79. doi:10.1016/0378-4290(90)90102-H

    Article  Google Scholar 

  • Hanif M, Noor E, Murtaza N et al (2008) Assessment of variability for salt tolerance at seedling stage in Gossypium hirsutum L. J Food Agric Environ 6:134–138

    CAS  Google Scholar 

  • Higbie SM, Wang F, Stewart JM et al (2010) Physiological response to salt (NaCl) stress in selected cultivated tetraploid cottons. Int J Agron 2010:1–12. doi:10.1155/2010/643475

    Article  Google Scholar 

  • Hoagland DR and Arnon DI (1950) The water-culture method for growing plants without soil. California Experiment Station Circular No. 347. The College of Agriculture, University of California, Berkeley

  • Hulse-Kemp AM, Ashrafi H, Zheng X et al (2014) Development and bin mapping of gene-associated interspecific SNPs for cotton (Gossypium hirsutum L.) introgression breeding efforts. BMC Genom 15:945. doi:10.1186/1471-2164-15-945

    Article  Google Scholar 

  • Ibrahim M, Akhtar J, Younis M Riaz, Anwar-ul-Haq MA, Tahir M (2007) Selection of cotton (Gossypium hirsutum L.) genotypes against NaCl stress. Soil & Env 26:59–63

    Google Scholar 

  • Jiang C-X, Chee PW, Draye X et al (2000) Multilocus interactions restrict gene introgression in interspecific populations of polyploid Gossypium (Cotton). Evolution (N Y) 54:798–814

    CAS  Google Scholar 

  • Joshi R, Ramanarao MV, Lee S et al (2014) Ectopic expression of ADP ribosylation factor 1 (SaARF1) from smooth cordgrass (Spartina alterniflora Loisel) confers drought and salt tolerance in transgenic rice and Arabidopsis. Plant Cell Tissue Organ Cult 117:17–30. doi:10.1007/s11240-013-0416-x

    Article  CAS  Google Scholar 

  • Khorsandi F, Anagholi A (2009) Reproductive compensation of cotton after salt stress relief at different growth stages. J Agron Crop Sci 195:278–283. doi:10.1111/j.1439-037X.2009.00370.x

    Article  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  CAS  PubMed  Google Scholar 

  • Leidi EO (1994) Genotypic variation of cotton in response to stress by NaCl or PEG. In: Peeters MC (ed) Cotton biotechnology., REUR technical series 32FAO, Rome, pp 67–73

    Google Scholar 

  • Li F, Fan G, Lu C et al (2015) Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33:524–530. doi:10.1038/nbt.3208

    Article  PubMed  Google Scholar 

  • Liang Q, Hu C, Hua H et al (2013) Construction of a linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Chin Sci Bull 58:3233–3243. doi:10.1007/s11434-013-5807-1

    Article  CAS  Google Scholar 

  • Liem ASN, Hendriks A, Kraal H, Loenen M (1985) Effects of de-icing salt on roadside grasses and herbs. Plant Soil 84:299–310

    Article  CAS  Google Scholar 

  • Liu S, Saha S, Burr B, Cantrell RG (2000) Chromosomal assigment of microsatellite loci in cotton. J Hered 91(4):326–332

    Article  CAS  PubMed  Google Scholar 

  • Maas EV (1990) Crop salt tolerance. Chapter 13, In: Tanji KK (ed.). Agricultural salinity assessment and management. ASCE Manual and Reports on Engineering Practice No. 71. American Society of Civil Engineers, pp 262–304

  • MacCaughey V (1917) Vegetation of Hawaiian lava flows. Bot Gaz 64:386–420

    Article  Google Scholar 

  • Mano Y, Takeda K (1997) Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica 94:263–272. doi:10.1023/A:1002968207362

    Article  Google Scholar 

  • Mehboob-ur-Rahman, Zafar Y, Paterson AH (2009) Gossypium DNA markers: types, numbers, and uses. In: Paterson AH (ed) Genetics and genomics of cotton. Plant genetics and genomics: Crops and Models, vol 3. Springer, pp 101–139

  • Mehetre SS, Patil SC, Pawar SV, Pardedhi SU, Shinde GC, Aher AR (2004) Ovulo embryo cultured hybrid between amphidiploids (Gossypium arboretum & Gossypium anomalum) and Gossypium hirsutum. Curr Sci 87:286–289

    Google Scholar 

  • Mo H, Pua E-C (2002) Up-regulation of arginine decarboxylase gene expression and accumulation of polyamines in mustard (Brassica juncea) in response to stress. Physiol Plant 114:439–449

    Article  CAS  PubMed  Google Scholar 

  • Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Plant Physiol 31:149–190

    Article  Google Scholar 

  • Munns R (2007) Utilizing genetic resources to enhance productivity of salt-prone land. CAB Rev 009:1–11

    Google Scholar 

  • Nadarajan NGM (2005) Quantitative genetics and biometrical techniques in plant breeding. Kalyani Publication, New Delhi

    Google Scholar 

  • Nguyen TB, Giband M, Brottier P et al (2004) Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet 109:167–175. doi:10.1007/s00122-004-1612-1

    Article  CAS  PubMed  Google Scholar 

  • Park YH, Alabady MS, Ulloa M et al (2005) Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Mol Genet Genomics 274:428–441

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, DeVerna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124:735–742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Lin Y-R, Li Z, Schertz KF, Doebley JF et al (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718

    Article  CAS  PubMed  Google Scholar 

  • Ponnamperuma FN (1984) Role of cultivar tolerance in increasing rice production on saline lands. In: Staples RC, Toenniessen GH (eds) Salinity tolerance in plants. Wiley, New York, pp 255–272

    Google Scholar 

  • Qadir M, Shams M (1997) Some agronomic and physiological aspects of salt tolerance in cotton (Gossypium hirsutum L.). J Agron Crop Sci 179:101–106. doi:10.1111/j.1439-037X.1997.tb00504.x

    Article  Google Scholar 

  • Quesada V, García-Martínez S, Piqueras P, Ponce MR, Micol JL (2002) Genetic architecture of NaCl tolerance in Arabidopsis thaliana. Plant Physiol 130:951–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023. doi:10.1093/jxb/erj108

    Article  CAS  PubMed  Google Scholar 

  • Riaz MK (2013) A step towards cotton genome assembly through construction of high density genetic map from interspecific cross of G. hirsutum × G. tomentosum. Dissertation Institute of Cotton Research, Chinese Academy of Agricultural Sciences

  • Rick CM, Smith PG (1953) Novel variation in tomato species hybrids. Am Nat 87:359–373

    Article  Google Scholar 

  • Rong J, Abbey C, Bowers JE et al (2004) A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166:389–417. doi:10.1534/genetics.166.1.389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rungis D, Llewellyn D, Dennis ES, Lyon BR (2005) Simple sequence repeat (SSR) markers reveal low levels of polymorphism between cotton (Gossypium hirsutum L.) cultivars. Aust J Agric Res 56:301–307

    Article  CAS  Google Scholar 

  • Saba J, Moghaddam M, Ghassemi K, Nishabouri MR (2001) Genetic properties of drought resistance indices. J Agric Sci Technol 3:43–49

    Google Scholar 

  • Saeed M, Wangzhen G, Tianzhen Z (2014) Association mapping for salinity tolerance in cotton (Gossypium hirsutum L.) germplasm from US and diverse regions of China. Aust J Crop Sci 8:338–346

    CAS  Google Scholar 

  • Stephens SG (1964) Native Hawaiian cotton (Gossypium tomentosum Nutt.). Pac Sci 18:385–398

    Google Scholar 

  • Stuber CW, Edwards MD, Wendel JF (1987) Molecular marker facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits. Crop Sci 27:639–648

    Article  Google Scholar 

  • Takehisa H, Shimodate T, Fukuta Y et al (2004) Identification of quantitative trait loci for plant growth of rice in paddy field flooded with salt water. Field Crop Res 89:85–95. doi:10.1016/j.fcr.2004.01.026

    Article  Google Scholar 

  • Tiwari RS, Stewart JM (2008) Effect of Salt on Several Genotypes of Gossypium. AES Res Ser 573:34–36

    Google Scholar 

  • Tiwari RS, Picchioni GA, Steiner RL et al (2013) Genetic variation in salt tolerance at the seedling stage in an interspecific backcross inbred line population of cultivated tetraploid cotton. Euphytica 194:1–11. doi:10.1007/s10681-013-0927-x

    Article  Google Scholar 

  • Van Ooijen JW (2006) JoinMap ® 4; Software for the calculation of genetic linkage maps in experimental populations, version Wageningen. Kyazma B.V, Wageningen

    Google Scholar 

  • Vega U, Frey KJ (1980) Transgressive segregation in inter and intraspecific crosses of barley. Euphytica 29:585–594

    Article  Google Scholar 

  • Villalta I, Reina-Sánchez A, Bolarín MC et al (2008) Genetic analysis of Na + and K + concentrations in leaf and stem as physiological components of salt tolerance in Tomato. Theor Appl Genet 116:869–880. doi:10.1007/s00122-008-0720-8

    Article  CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78. doi:10.1093/jhered/93.1.77

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Song X, Han Z et al (2006) Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping. Theor Appl Genet 113:73–80. doi:10.1007/s00122-006-0273-7

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2007) Windows QTL Cartographer 2.5. Department of Statistics. North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Wendel JF, Brubaker C, Alvarez I, Cronn R, Stewart JM (2009) Evolution and natural history of the cotton Genus. In: Paterson AH (ed) Genetics and genomics of cotton, vol 3. Springer, New York, pp p3–p22

    Chapter  Google Scholar 

  • Young ND, Tanksley SD (1989) Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet 77:95–101. doi:10.1007/BF00292322

    Article  CAS  PubMed  Google Scholar 

  • Youngner VB, Lunt OR (1967) Salinity effects on roots and tops of bermuda grass. Grass Forage Sci 22:257–259. doi:10.1111/j.1365-2494.1967.tb00536.x

    Article  Google Scholar 

  • Zhang L, W Ye, J Wang, B Fan (2010) Studies of salinity-tolerance with SSR markers on G. hirsutum L. Cott Sci 22:175–180. http://www.journal.cricaas.com.cn/en/2010/02/cs100214.htm

  • Zhang T, Hu Y, Jiang W et al (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537. doi:10.1038/nbt.3207

    Article  CAS  PubMed  Google Scholar 

  • Zhu J-K (2011) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273. doi:10.1146/annurev.arplant.53.091401.143329

    Article  Google Scholar 

Download references

Acknowledgments

This program was financially sponsored by the National Natural Science Foundation of China(31530053; 31401424).

Author contributions

KBW & FL designed the experiments. OG and JYZ conceived the experiments and analyzed the results having equal contribution. OG & XXW carried out most computational analyses. JYZ and OG carried out the experiments. ZLZ, MKR, XYC, CYW and YHW participated in part of QTL analysis. XYL and HW participated in part of trait collection. OG and JYZ drafted the manuscript. XXW and KBW revised the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Liu or Kunbo Wang.

Additional information

George Oluoch and Juyun Zheng have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oluoch, G., Zheng, J., Wang, X. et al. QTL mapping for salt tolerance at seedling stage in the interspecific cross of Gossypium tomentosum with Gossypium hirsutum . Euphytica 209, 223–235 (2016). https://doi.org/10.1007/s10681-016-1674-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-016-1674-6

Keywords

Navigation