Abstract
The production of polycarbonate, a high-performance transparent plastic, employs bisphenol A, which is a prominent endocrine-disrupting compound. Polycarbonates are frequently used in the manufacturing of food, bottles, storage containers for newborns, and beverage packaging materials. Global production of BPA in 2022 was estimated to be in the region of 10 million tonnes. About 65–70% of all bisphenol A is used to make polycarbonate plastics. Bisphenol A leaches from improperly disposed plastic items and enters the environment through wastewater from plastic-producing industries, contaminating, sediments, surface water, and ground water. The concentration BPA in industrial and domestic wastewater ranges from 16 to 1465 ng/L while in surface water it has been detected 170–3113 ng/L. Wastewater treatment can be highly effective at removing BPA, giving reductions of 91–98%. Regardless, the remaining 2–9% of BPA will continue through to the environment, with low levels of BPA commonly observed in surface water and sediment in the USA and Europe. The health effects of BPA have been the subject of prolonged public and scientific debate, with PubMed listing more than 17,000 scientific papers as of 2023. Bisphenol A poses environmental and health hazards in aquatic systems, affecting ecosystems and human health. While several studies have revealed its presence in aqueous streams, environmentally sound technologies should be explored for its removal from the contaminated environment. Concern is mostly related to its estrogen-like activity, although it can interact with other receptor systems as an endocrine-disrupting chemical. Present review article encompasses the updated information on sources, environmental concerns, and sustainable remediation techniques for bisphenol A removal from aquatic ecosystems, discussing gaps, constraints, and future research requirements.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
Abbreviations
- BPA:
-
Bisphenol A
- WWTP:
-
Wastewater treatment plant
- cAMP:
-
Cyclic adenosine monophosphate
- ERR:
-
Estrogen-related receptor
- PPAR:
-
Peroxisome proliferator-activated receptor
- MAE:
-
Microwave-assisted extraction
- MIP-SPE:
-
Molecularly imprinted polymer-solid phase extraction
- LC-MS:
-
Liquid chromatography and mass spectrometry
- ELISA:
-
Enzyme-linked immunosorbent assay
- LMEs:
-
Lignin-modifying enzymes
References
Abdel-Tawwab, M., & Hamed, H. S. (2018). Effect of bisphenol A toxicity on growth performance, biochemical variables, and oxidative stress biomarkers of Nile tilapia, Oreochromis niloticus (L.). Journal of Applied Ichthyology, 34, 1117–1125. https://doi.org/10.1111/jai.13763
Abdulhameed, A. S. A. R., Lim, V., Bahari, H., Khoo, B. Y., Abdullah, M. N. H., Tan, J. J., & Yong, Y. K. (2022). Adverse effect of bisphenol A on the liver and its underlying mechanisms: Evidence from in-vivo and in-vitro studies. BioMedical Research International, 1–11. https://doi.org/10.1155/2022/8227314
Abedelhaffez, A. S., Elaziz, E. A. A., Aziz, M. A. A., & Ahmed, A. M. (2017). Lung injury induced by bisphenol A: A food contaminant, is ameliorated by selenium supplementation. Pathophysiology, 24, 81–89. https://doi.org/10.1016/j.pathophys.2017.02.003
Abraham, A., & Chakraborty, P. (2020). A review on sources and health impacts of bisphenol A. Reviews on Environmental Health, 35, 201–210. https://doi.org/10.1515/reveh-2019-0034
Abril, C., Santos, J. L., Martín, J., Aparicio, I., & Alonso, E. (2020). Occurrence, fate and environmental risk of anionic surfactants, bisphenol A, perfluorinated compounds and personal care products in sludge stabilization treatments. Science of the Total Environment, 711, 135048. https://doi.org/10.1016/j.scitotenv.2019.135048
Adoamnei, E., Mendiola, J., Vela-Soria, F., Fernández, M. F., Olea, N., Jørgensen, N., Swan, S. H., & Torres Cantero, A. M. (2018). Urinary bisphenol A concentrations are associated with reproductive parameters in young men. Environmental Research, 161, 122–128. https://doi.org/10.1016/j.envres.2017.11.002
Ahamad, T., Naushad, M., Ruksana Alhabarah, A. N., & Alshehri, S. M. (2019). N/S doped highly porous magnetic carbon aerogel derived from sugarcane bagasse cellulose for the removal of bisphenol A. International Journal of Biological Macromolecules, 132, 1031–1038. https://doi.org/10.1016/j.ijbiomac.2019.04.004
Ahn, C., Kang, H. S., Lee, J. H., Hong, E. J., Jung, E. M., Yoo, Y. M., & Jeung, E. B. (2018). Bisphenol A and octyl phenol exacerbate type 1 diabetes mellitus by disrupting calcium homeostasis in mouse panceres. Toxicology Letters, 295, 162–172. https://doi.org/10.1016/j.toxlet.2018.06.1071
Akbari, S., Ghanbari, F., & Moradi, M. (2016). Bisphenol A degradation in aqueous solutions by electrogenerated ferrous ion activated ozone, hydrogen peroxide and persulfate: Applying low current density for oxidation mechanism. Chemical Engineering Journal, 294, 298–307. https://doi.org/10.1016/j.cej.2016.02.106
Akintunde, J. K., Akintola, T. E., Adenuga, G. O., Odugbemi, Z. A., Adetoye, R. O., & Akintunde, O. G. (2020). Naringin attenuates bisphenol-A mediated neurotoxicity in hypertensive rats by abrogation of cerebral nucleotide depletion, oxidative damage and neuroinflammation. Neurotoxicology, 81, 18–33. https://doi.org/10.1016/j.neuro.2020.08.00
Akram, R., Iqbal, R., Hussain, R., Jabeen, F., & Ali, M. (2021). Evaluation of oxidative stress, antioxidant enzymes and genotoxic potential of bisphenol A in fresh water bighead carp (Aristichthys nobils) fish at low concentrations. Environment Pollution, 268, 115896. https://doi.org/10.1016/j.envpol.2020.115896
Almakhathi, A. A. S., Zeeshan, M., Shah, J., & Jan, M. R. (2022). Simultaneous removal and extraction of bisphenol A and 4-tert-butylphenol from water samples using magnetic chitosan particles. Frontiers in Materials, 9, 786581. https://doi.org/10.3389/fmats.2022.786581
Almeida, S., Raposo, A., Almeida-González, M., & Carrascosa, C. (2018). Bisphenol A: Food exposure and impact on human health: Bisphenol A and human health effect. Comprehensive Reviews in Food Science and Food Safety, 17, 1503–1517. https://doi.org/10.1111/1541-4337.12388
Alonso-Magdalena, P., Ropero, A. B., Soriano, S., García-Arévalo, M., Ripoll, C., Fuentes, E., Quesada, I., & Nadal, Á. (2012). Bisphenol-A acts as a potent estrogen via non-classical estrogen triggered pathways. Molecular and Cellular Endocrinology, 355, 201–207. https://doi.org/10.1016/j.mce.2011.12.012
Altamirano, G. A., Gomez, A. L., Schierano-Marotti, G., Muñoz-de-Toro, M., Rodriguez, H. A., & Kass, L. (2020). Bisphenol A and benzophenone-3 exposure alters milk protein expression and its transcriptional regulation during functional differentiation of the mammary gland in-vitro. Environmental Research, 191, 110185. https://doi.org/10.1061/j.envers.2020.110185
Alves, A. C. F., Antero, R. V. P., de Oliveira, S. B., Ojala, S. A., & Scalize, P. S. (2019). Activated carbon produced from waste coffee grounds for an effective removal of bisphenol-A in aqueous medium. Environmental Science and Pollution Research, 26(24), 24850–24862. https://doi.org/10.1007/s11356-019-05717-7
Anak Juan, D., Abu Hasan, H., Muhamad, M. H., Sheikh Abdullah, S. R., Abu Bakar, S. N. H., & Buhari, J. (2021). Physico-chemical and biological techniques of bisphenol a removal in aqueous solution. Journal of. Ecological Engineering, 22(9), 136–148. https://doi.org/10.12911/22998993/141333
Ao, J., Huo, X., Zhang, J., Mao, Y., Li, G., Ye, J., Shi, Y., Jin, F., Bao, S., & Zhang, J. (2022). Environmental exposure to bisphenol analogues and unexplained recurrent miscarriage: A case-control study. Environmental Research, 204, 112293. https://doi.org/10.1016/j.envres.2021.112293
Arca-Ramos, A., Eibes, G., Feijoo, G., Lema, J. M., & Moreira, M. T. (2015). Potentiality of a ceramic membrane reactor for the laccase-catalyzed removal of bisphenol A from secondary effluents. Applied Microbiology and Biotechnology, 99, 9299–9308. https://doi.org/10.1007/s00253-015-6826-4
Arditsoglou, A., & Voutsa, D. (2012). Occurrence and partitioning of endocrine-disrupting compounds in the marine environment of Thermaikos Gulf, Northern Aegean Sea, Greece. Marine Pollution Bulletin, 64, 2443–2452.
Aryal, S., Park, H., Leary, J. F., & Key, J. (2019). Top-down fabrication-based nano/microparticles for molecular imaging and drug delivery. The International Journal of Nanomedicine, 14, 6631–6644. https://doi.org/10.2147/IJN.S212037
Asadgol, Z., Forootanfar, H., Rezaei, S., Mahvi, A. H., & Faramarzi, M. A. (2015). Removal of phenol and bisphenol-A catalyzed by laccase in aqueous solution. Journal of Environmental Health Science & Engineering, 12, 93. https://doi.org/10.1186/2052-336X-12-93
Athalathil, S., Fortuny, A., Font, J., Stüber, F., Bengoa, C., & Fabregat, A. (2015). A potential application of sludge-based catalysts for the anaerobic bio-decolorization of tartrazine dye. Environmental Technology, 36, 2568–2576. https://doi.org/10.1080/09593330.2015.1037361
Balbi, T., Franzellitti, S., Fabbri, R., Montagna, M., Fabbri, E., & Canesi, L. (2016). Impact of bisphenol A (BPA) on early embryo development in the marine mussel Mytilus galloprovincialis: Effects on gene transcription. Environmental Pollution, 218, 996–1004. https://doi.org/10.1016/j.envpol.206.08.050
Barboza, L. G. A., Cunha, S. C., Monteiro, C., Fernandes, J. O., & Guilhermino, L. (2020). Bisphenol A and its analogs in muscle and liver of fish from the North East Atlantic Ocean in relation to microplastic contamination. Exposure and risk to human consumers. Journal of Hazardous Materials, 393, 122419. https://doi.org/10.1016/j.jhazmat.2020.122419
Bayen, S., Estrada, S., Juhel, G., Kit, L. W., & Kelly, B. C. (2016). Pharmaceutically active compounds and endocrine disrupting chemicals in water, sediments and mollusks in mangrove ecosystems from Singapore. Marine Pollution Bulletin, 109, 716–722.
Ben Ouada, S., Ben Ali, R., Leboulanger, C., Zaghden, H., Choura, S., Ben Ouada, H., & Sayadi, S. (2018). Effect and removal of bisphenol A by two extremophilic microalgal strains (Chlorophyta). Journal of Applied Phycology, 30, 1765–1776. https://doi.org/10.1007/s10811-017-1386-x
Berger, K., Eskenazi, B., Balmes, J., Kogut, K., Holland, N., Calafat, A. M., & Harley, K. G. (2019). Prenatal high molecular weight phthalates and bisphenol A, and childhood respiratory and allergic outcomes. Journal of the European Academy of Allergy and Clinical Immunology, 30, 36–46. https://doi.org/10.1111/pai.12992
Bhatnagar, A., & Anastopoulos, I. (2017). Adsorptive removal of bisphenol A (BPA) from aqueous solution: A review. Chemosphere, 168, 885–902. https://doi.org/10.1016/j.Chemosphere.2016.10.121
Blanchard, O., Glorennec, P., Mercier, F., Bonvallot, N., Chevrier, C., Ramalho, O., Mandin, C., & Bot, B. L. (2014). Semivolatile organic compounds in indoor air and settled dust in 30 French Dwellings. Environmental Science & Technology, 48(7), 3959–3969. https://doi.org/10.1021/es405269q
Bosch-Panadero, E., Mas, S., Sanchez-Ospina, D., Camarero, V., Pérez-Gómez, M. V., Saez-Calero, I., Abaigar, P., Ortiz, A., Egido, J., & González-Parra, E. (2016). The choice of hemodialysis membrane affects bisphenol A levels in blood. Journal of the American Society of Nephrology, 27, 1566–1574. https://doi.org/10.1681/ASN.201503031
Bošnjak, I., Borra, M., Iamunno, F., Benvenuto, G., Ujević, I., Bušelić, I., Roje-Busatto, R., & Mladineo, I. (2014). Effect of bisphenol A on P-glycoprotein-mediated efflux and ultrastructure of the sea urchin embryo. Aquatic Toxicology, 156, 21–29. https://doi.org/10.1016/j.aquatox.2014.07.018
Boucher, J. G., Boudreau, A., Ahmed, S., & Atlas, E. (2015). In vitro effects of bisphenol a β -d-glucuronide (bpa-g) on adipogenesis in human and murine preadipocytes. Environmental Health Perspectives, 123(12), 1287–1293. https://doi.org/10.1289/ehp.1409143
Bousoumah, R., Leso, V., Iavicoli, I., Huuskonen, P., Viegas, S., Porras, S. P., Santonen, T., Frery, N., Robert, A., & Ndaw, S. (2021). Biomonitoring of occupational exposure to bisphenol A, bisphenol S and bisphenol F: A systematic review. Science of the Total Environment, 783, 146905. https://doi.org/10.1016/j.scitotenv.2021.146905
Brugnari, T., Braga, D. M., dos Santos, C. S. A., Torres, B. H. C., Modkovski, T. A., Haminiuk, C. W. I., & Maciel, G. M. (2021). Laccases as green and versatile biocatalysts: From lab to enzyme market—an overview. Bioresources and Bioprocess, 8, 131. https://doi.org/10.1186/s40643-021-00484-
Campen, K. A., Kucharczyk, K. M., Bogin, B., Ehrlich, J. M., & Combelles, C. M. H. (2018). Spindle abnormalities and chromosome misalignment in bovine oocytes after exposure to low doses of bisphenol A or bisphenol S. Human Reproduction, 33, 895–904. https://doi.org/10.1093/humrep/dey050
Canesi, L., & Fabbri, E. (2015). Environmental effects of BPA: Focus on aquatic species. Dose-Response, 13(3), 55932581559830. https://doi.org/10.1177/1559325815598304
Carbó, M., Chaturvedi, P., Álvarez, A., Pineda-Cevallos, D., Weckwerth, W., González, P. R., Cañal, M. J., Weckwerth, W., & Valledor, L. (2023). Ferroptosis is the key cellular process mediating bisphenol A responses in Chlamydomonas and a promising target for enhancing microalgae-based bioremediation. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2023.130997
Careghini, A., Mastorgio, A. F., Saponaro, S., & Sezenna, E. (2015). Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. Environmental Science and Pollution Research, 22, 5711–5741. https://doi.org/10.1007/s11356-014-3974-5
Carwile, J. L., & Michels, K. B. (2011). Urinary bisphenol A and obesity: NHANES 2003–2006. Environmental Research, 111, 825–830. https://doi.org/10.1016/j.envres.2011.05.014
Catenza, C. J., Farooq, A., Shubear, N. S., & Donkor, K. K. (2021). A targeted review on fate, occurrence, risk and health implications of bisphenol analogues. Chemosphere, 268, 129273. https://doi.org/10.1016/j.Chemosphere.2020.129273
Chafi, S., Azzouz, A., & Ballesteros, E. (2022). Occurrence and distribution of endocrine disrupting chemicals and pharmaceuticals in the river Bouregreg (Rabat, Morocco). Chemosphere, 287, 132202. https://doi.org/10.1016/j.Chemosphere.2021.132202
Chairin, T., Nitheranont, T., Watanabe, A., Asada, Y., Khanongnuch, C., & Lumyong, S. (2014). Purification and characterization of the extracellular laccase produced by Trametes polyzona WR710-1 under solid-state fermentation: Characterization of laccase produced from Trametes polyzona. Journal of Basic Microbiology, 54, 35–43. https://doi.org/10.1002/jobm.201200456
Chakraborty, P., Sampath, S., Mukhopadhyay, M., Selvaraj, S., Bharat, G. K., & Nizzetto, L. (2019). Baseline investigation on plasticizers, bisphenol A, polycyclic aromatic hydrocarbons and heavy metals in the surface soil of the informal electronic waste recycling workshops and nearby open dumpsites in Indian metropolitan cities. Environmental Pollution, 248, 1036–1045. https://doi.org/10.1016/j.envpol.2018.11.010
Chakraborty, P., Shappell, N. W., Mukhopadhyay, M., Onanong, S., Rex, K. R., & Snow, D. (2021). Surveillance of plasticizers, bisphenol a, steroids and caffeine in surface water of river ganga and sundarban wetland along the bay of bengal: occurrence, sources, estrogenicity screening and ecotoxicological risk assessment. Water Research, 190, 116668. https://doi.org/10.1016/j.watres.2020.116668
Chang, B. V., Yu, C. H., & Yuan, S. Y. (2004). Degradation of nonylphenol by anaerobic microorganisms from river sediment. Chemosphere, 55, 493–500. https://doi.org/10.1016/j.Chemosphere.2004.01.004
Chen, D., Kannan, K., Tan, H., Zheng, Z., Feng, Y. L., Wu, Y., & Widelka, M. (2016). Bisphenol analogues other than BPA: Environmental occurrence, human exposure, and toxicity—A review. Environmental Science & Technology, 50(11), 5438–5453. https://doi.org/10.1021/acs.est.5b05387
Chen, F., An, W., Liu, L., Liang, Y., & Cui, W. (2017). Highly efficient removal of bisphenol A by a three-dimensional graphene hydrogel-AgBr@rGO exhibiting adsorption/photocatalysis synergy. Applied Catalysis B: Environmental, 217, 65–80. https://doi.org/10.1016/j.apcatb.2017.05.078
Chen, L., Deng, Y., Dong, S., Wang, H., Li, P., Zhang, H., & Chu, W. (2021). The occurrence and control of waterborne viruses in drinking water treatment: A review. Chemosphere, 281, 130728. https://doi.org/10.1016/j.Chemosphere.2021.130728
Chen, Z., Zuo, X., He, D., Ding, S., Xu, F., Yang, H., Jin, X., Fan, Y., Ying, L., Tian, C., & Ying, C. (2017). Long-term exposure to a ‘safe’ dose of bisphenol A reduced protein acetylation in adult rat testes. Scientific Reports, 7, 40337. https://doi.org/10.1038/srep40337
Chen, Z. H., Liu, Z., Hu, J. Q., Cai, Q. W., Li, X. Y., Wang, W., Faraj, Y., Ju, X. J., Xie, R., & Chu, L. Y. (2020). β-Cyclodextrin-modified graphene oxide membranes with large adsorption capacity and high flux for efficient removal of bisphenol A from water. Journal of Membrane Science, 595, 117510. https://doi.org/10.1016/j.memsci.2019.117510
Chu, J. H., Kang, J. K., Park, S. J., & Lee, C. G. (2021). Bisphenol A degradation using waste antivirus copper film with enhanced sono-Fenton-like catalytic oxidation. Chemosphere, 276, 130218. https://doi.org/10.1016/j.Chemosphere.2021.130218
Corrales, J., Kristofco, L. A., Steele, W. B., Yates, B. S., Breed, C. S., Williams, E. S., & Brooks, B. W. (2015). Global assessment of bisphenol a in the environment: Review and analysis of its occurrence and bioaccumulation. Dose-Response, 13, 155932581559830.
Cwiek-Ludwicka, K. (2015). Bisphenol A (BPA) in food contact materials - new scientific opinion from EFSA regarding public health risk. Roczniki Państwowego Zakładu Higieny, 66(4), 299–307.
Czarny-Krzymińska, K., Krawczyk, B., & Szczukocki, D. (2022). Toxicity of bisphenol A and its structural congeners to microalgae Chlorella vulgaris and Desmodesmus armatus. Journal of the International Society for Applied Phycology, 34, 1397–1410. https://doi.org/10.1007/s10811-022-02704-3
Czarny-Krzymińska, K., Krawczyk, B., & Szczukocki, D. (2023). Bisphenol A and its substitutes in the aquatic environment: Occurrence and toxicity assessment. Chemosphere, 315, 137763. https://doi.org/10.1016/j.chemosphere.2023.137763
Daâssi, D., Prieto, A., Zouari-Mechichi, H., Martínez, M. J., Nasri, M., & Mechichi, T. (2016). Degradation of bisphenol A by different fungal laccases and identification of its degradation products. International Biodeterioration and Biodegradation, 110, 181–188. https://doi.org/10.1016/j.ibiod.2016.03.017
Dai, Y. D., Chao, H. R., & Chiang, P. C. (2019). Detection, occurrence, and treatment of nonylphenol and bisphenol-A in taiwanese drinking water sources. Journal of Hazardous, Toxic, and Radioactive Waste, 23(2). https://doi.org/10.1061/(asce)hz.2153-5515.0000430
Das, R., Yao, P., Yin, H., Liang, Z., Li, G., & An, T. (2023). BPA degradation using biogenic manganese oxides produced by an engineered Escherichia coli with a non-blue laccase from Bacillus sp. GZB. Chemosphere, 326, 138407. https://doi.org/10.1016/j.chemosphere.2023.138407
Den Hond, E., Tournaye, H., De Sutter, P., Ombelet, W., Baeyens, W., Covaci, A., Cox, B., Nawrot, T. S., Van Larebeke, N., & D’Hooghe, T. (2015). Human exposure to endocrine disrupting chemicals and fertility: A case–control study in male subfertility patients. Environment International, 84, 154–160. https://doi.org/10.1016/j.envint.2015.07.017
Deng, W. J., Li, N., Wu, R., Richard, W. K., Wang, Z., & Ho, W. (2018). Phosphorus flame retardants and Bisphenol A in indoor dust and PM2.5 in kindergartens and primary schools in Hong Kong. Environmental Pollution, 235, 365–371. https://doi.org/10.1016/j.envpol.2017.12.093
Di Pietro, P., D’Auria, R., Viggiano, A., Ciaglia, E., Meccariello, R., Russo, R. D., Puca, A. A., Vecchione, C., Nori, S. L., & Santoro, A. (2020). Bisphenol A induces DNA damage in cells exerting immune surveillance functions at peripheral and central level. Chemosphere, 254, 126819. https://doi.org/10.1016/j.Chemosphere.2020.126819
Diamanti-Kandarakis, E., Bourguignon, J. P., Giudice, L. C., Hauser, R., Prins, G. S., Soto, A. M., Zoeller, R. T., & Gore, A. C. (2009). Endocrine-disrupting chemicals: An endocrine society scientific statement. Endocrine Reviews, 30(4), 293–342. https://doi.org/10.1210/er.2009-0002
Donohue, K. M., Miller, R. L., Perzanowski, M. S., Just, A. C., Hoepner, L. A., Arunajadai, S., Canfield, S., Resnick, D., Calafat, A. M., Perera, F. P., & Whyatt, R. M. (2013). Prenatal and postnatal bisphenol A exposure and asthma development among inner-city children. Journal of Allergy and Clinical Immunology, 131, 736–742.e6. https://doi.org/10.1016/j.jaci.2012.12.1573
Dorival-García, N., Zafra-Gómez, A., Navalón, A., & Vílchez, J. L. (2012). Analysis of bisphenol A andits chlorinated derivatives in sewage sludge samples. Comparison of the efficiency of three extraction techniques. Journal of Applied Physiology, 1253, 1–10. https://doi.org/10.1016/j.chroma.2012.06.079
dos Santos Rosa, D. (2018). Degradation study of BPA-containing plastics in water samples collected from an urban reservoir. Journal of Hydrology, 2. https://doi.org/10.15406/ijh.2018.02.00092
Eio, E. J., Kawa, M., Niwa, C., Ito, M., Yamamoto, S., & Toda, T. (2015). Biodegradation of bisphenol A by an algal-bacterial system. Environmental Science and Pollution Research, 22, 15145–15153. https://doi.org/10.1007/s11356-015-4693-2
Eladak, S., Grisin, T., Moison, D., Guerquin, M., N’Tumba-Byn, T., Pozzi-Gaudin, S., et al. (2015). A new chapter in the bisphenol A story: Bisphenol S and bisphenol F are not safe alternatives to this compound. Fertility and sterility, 103(1), 11–21.
Eltoukhy, A., Jia, Y., Nahurira, R., Abo-Kadoum, M. A., Khokhar, I., Wang, J., & Yan, Y. (2020). Biodegradation of endocrine disruptor bisphenol A by Pseudomonas putida strain YC-AE1 isolated from polluted soil, Guangdong, China. BMC Microbiology, 20, 11. https://doi.org/10.1186/s12866-020-1699-9
Enayatizamir, N., Liu, J., Wang, L., Lin, X., & Fu, P. (2020). Coupling laccase production from Trametes pubescence with heavy metal removal for economic waste water treatment. Journal of Water Process Engineering, 37, 101357. https://doi.org/10.1016/j.jwpe.2020.101357
Erickson. (2022). US FDA urged to limit bisphenol A in food packaging again. https://Cen.Acs.Org/Safety/Consumer-Safety/US-FDA-Urged-Limit-Bisphenol-A-in-Food-Packaging-Again/100/Web/2022/01. Retrieved July 21, 2023, from https://cen.acs.org/safety/consumer-safety/US-FDA-urged-limit-bisphenol-A-in-food-packaging-again/100/web/2022/01. Accessed 17/10/2023
EU Commission Directive. (2011). In https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:026:0011:0014:EN:PDF. Off J Eur Union. Retrieved 17 Oct, 2023, from https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:026:0011:0014:EN:PDF. Accessed 17/10/2023
European Food Safety Authority (EFSA) (2017). Bisphenol A (BPA) hazard assessment protocol. In https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/sp.efsa.2017.EN-1354. Retrieved July 21, 2023, from https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/sp.efsa.2017.EN-1354. Accessed 17/10/2023
Faheem, M., Jahan, N., Khaliq, S., & Lone, K. P. (2019). Modulation of brain kisspeptin expression after bisphenol-A exposure in a teleost fish, Catla catla. Fish Physiology and Biochemistry, 45, 33–42. https://doi.org/10.1007/s10695-018-0532-y
Fent, G., Hein, W. J., Moendel, M. J., & Kubiak, R. (2003). Fate of 14C-bisphenol A in soils. Chemosphere, 51, 735–746. https://doi.org/10.1016/S0045-6535(03)00100-0
Fischer, J., Kappelmeyer, U., Kastner, M., Schauer, F., & Heipieper, H. J. (2010). The degradation of bisphenol A by the newly isolated bacterium Cupriavidus basilensis JF1 can be enhanced by bio stimulation with phenol. International Biodeterioration and Biodegradation, 64, 324–330. https://doi.org/10.1016/j.ibiod.2010.03.007
Flint, S., Markle, T., Thompson, S., & Wallace, E. (2012). Bisphenol A exposure, effects, and policy: A wildlife perspective. Journal of Environmental Management, 104, 19–34. https://doi.org/10.1016/j.jenvman.2012.03.021
Frenzilli, G., Martorell-Ribera, J., Bernardeschi, M., Scarcelli, V., Jönsson, E., Diano, N., Moggio, M., Guidi, P., Sturve, J., & Asker, N. (2021). Bisphenol A and bisphenol S induce endocrine and chromosomal alterations in brown trout. Frontiers in Endocrinology, 12, 645519. https://doi.org/10.3389/fendo.2021.645519
Fürhacker, M., Scharf, S., & Weber, H. (2000). Bisphenol A: emissions from point sources. Chemosphere, 41, 751–756. https://doi.org/10.1016/S0045-6535(99)00466-X
Furuya, M., Adachi, K., Kuwahara, S., Ogawa, K., & Tsukamoto, Y. (2006). Inhibition of male chick phenotypes and spermatogenesis by bisphenol-A. Life Sciences, 78, 1767–1776. https://doi.org/10.1016/j.lfs.2005.08.016
Galoppo, G. H., Canesini, G., Tavalieri, Y. E., Stoker, C., Kass, L., Luque, E. H., & Muñoz-de-Toro, M. (2017). Bisphenol A disrupts the temporal pattern of histo functional changes in the female reproductive tract of Caiman latirostris. General and Comparative Endocrinology, 254, 75–85. https://doi.org/10.1016/j.ygcen.2017.09.021
Gao, Y., Xiao, S. K., Wu, Q., & Pan, C. G. (2023). Bisphenol analogues in water and sediment from the Beibu Gulf, South China Sea: Occurrence, partitioning and risk assessment. Science of the Total Environment, 857, 159445. https://doi.org/10.1016/j.scitotenv.2022.159445
Garcia-Morales, R., Rodríguez-Delgado, M., Gomez-Mariscal, K., Orona-Navar, C., Hernandez-Luna, C., Torres, E., Parra, R., Cárdenas-Chávez, D., Mahlknecht, J., & Ornelas-Soto, N. (2015). Biotransformation of endocrine-disrupting compounds in groundwater: Bisphenol A, nonylphenol, ethynylestradiol and triclosan by a laccase cocktail from pycnoporus sanguineus cs43. Water, Air, & Soil Pollution, 226, 251. https://doi.org/10.1007/s11270-015-2514-3
Gasser, C. A., Yu, L., Svojitka, J., Wintgens, T., Ammann, E. M., Shahgaldian, P., Corvini, P. F. X., & Hommes, G. (2014). Advanced enzymatic elimination of phenolic contaminants in wastewater: A nano approach at field scale. Applied Microbiology and Biotechnology, 98, 3305–3316. https://doi.org/10.1007/s00253-013-5414-8
Gattullo, C. E., Bährs, H., Steinberg, C. E. W., & Loffredo, E. (2012). Removal of bisphenol A by the freshwater green alga Monoraphidium braunii and the role of natural organic matter. Science of the Total Environment, 416, 501–506. https://doi.org/10.1016/j.scitotenv.2011.11.033
Ge, Y., Ren, F., Chen, L., Hu, D., Wang, X., Cui, Y., Suo, Y., Zhang, H., He, J., Yin, Z., & Ning, H. (2021). Bisphenol A exposure induces apoptosis and impairs early embryonic development in Xenopus laevis. Environmental Pollution, 280, 116901. https://doi.org/10.1016/j.envpol.2021.116901
Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3, 1700782. https://doi.org/10.1126/sciadv.1700782
Ghassabian, A., Bell, E. M., Ma, W. L., Sundaram, R., Kannan, K., Buck Louis, G. M., & Yeung, E. (2018). Concentrations of perfluoroalkyl substances and bisphenol A in newborn dried blood spots and the association with child behaviour. Environmental Pollution, 243, 1629–1636. https://doi.org/10.1016/j.envpol.2018.09.107
Gibson, R., Duran-Alvarez, J. C., Estrada, K. L., Chavez, A., & Jimenez Cisneros, B. (2010). Accumulation and leaching potential of some pharmaceuticals and potential endocrine disruptors in soils irrigated with wastewater in the Tula Valley, Mexico. Chemosphere, 81(11), 1437e1445. https://doi.org/10.1016/j.Chemosphere.2010.09.006
Godiya, C. B., Liang, M., Sayed, S. M., Li, D., & Lu, X. (2020). Novel alginate/polyethyleneimine hydrogel adsorbent for cascaded removal and utilization of Cu2+ and Pb2+ ions. Journal of Environmental Management, 232, 829–841. https://doi.org/10.1016/j.jenvman.2018.11.131
Goldfarb, R. H., Timonen, T., & Herberman, R. B. (1984). Production of plasminogen activator by human natural killer cells. Large granular lymphocytes. Journal of Experimental Medicine, 159, 935–951. https://doi.org/10.1084/jem.159.3.935
Golub, M. S., & Doherty, J. D. (2004). Triphenyltin as a potential human endocrine disruptor. Journal of Toxicology and Environmental Health, Part B, 7(4), 281–295. https://doi.org/10.1080/10937400490452705
Gonsioroski, A., Mourikes, V. E., & Flaws, J. A. (2020). Endocrine disruptors in water and their effects on the reproductive system. International Journal of Molecular Sciences, 21, 1929. https://doi.org/10.3390/ijms21061929
Gorga, M., Insa, S., Petrovic, M., & Barceló, D. (2014). Analysis of endocrine disrupters and related compounds in sediments and sewage sludge using on-line turbulent flow chromatography–liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1352, 29–37. https://doi.org/10.1016/j.chroma.2014.05.028
Guo, D., Xie, G., & Luo, J. (2014). Mechanical properties of nanoparticles: Basics and applications. Journal of Applied Physics, 47, 013001. https://doi.org/10.1088/0022-3727/47/1/013001
Guo, Y., Wang, J., Shinde, S., Wang, X., Li, Y., Dai, Y., Ren, J., Zhang, P., & Liu, X. (2020). Simultaneous wastewater treatment and energy harvesting in microbial fuel cells: An update on the biocatalysts. RSC Advances, 10, 25874–25887. https://doi.org/10.1039/D0RA05234E
Han, H., Wu, H., Zhi, Y., Zhou, J., Li, W., Yuan, L., & Cao, Y. (2023a). Impacts of bisphenol A on growth and reproductive traits of submerged macrophyte Vallisneria natans. Environmental Science and Pollution Research, 30(16), 46383–46393. https://doi.org/10.1007/s11356-023-25521-8
Han, H., Wu, H., Zhi, Y., Zhou, J., Li, W., Yuan, L., & Cao, Y. (2023b). Impacts of bisphenol A on growth and reproductive traits of submerged macrophyte Vallisneria natans. Environmental Science and Pollution Research, 30(16), 46383–46393. https://doi.org/10.1007/s11356-023-25521-8
Han, Y., Shi, W., Tang, Y., Zhou, W., Sun, H., Zhang, J., Yan, M., Hu, L., & Liu, G. (2022). Microplastics and bisphenol A hamper gonadal development of whiteleg shrimp (Litopenaeus vannamei) by interfering with metabolism and disrupting hormone regulation. Science of the Total Environment, 810, 152354. https://doi.org/10.1016/j.scitotenv.2021.152354
Hao, M., Ding, L., Xuan, L., Wang, T., Li, M., Zhao, Z., Lu, J., Xu, Y., Chen, Y., Wang, W., Bi, Y., Xu, M., & Ning, G. (2018). Urinary bisphenol A concentration and the risk of central obesity in Chinese adults: A prospective study. Journal of Diabetes, 442–448. https://doi.org/10.1111/1753-0407.1253
Hart, R. J. (2020). The impact of prenatal exposure to bisphenol A on male reproductive function. Frontiers in Endocrinology, 11, 320. https://doi.org/10.3389/fendo.2020.00320
Hasanah, A. N., & Susanti, I. (2023). Molecularly imprinted polymers for pharmaceutical impurities: Design and synthesis methods. Polymers, 15(16), 3401. https://doi.org/10.3390/polym15163401
Hashim, N., Kassim, M., Yusof, N., & Sharifuddin, S. (2018). Bioremediation of endocrine disruptive chemicals: The power of microbial enzymes. Asian Journal of Biotechnology and Bioresource Technology, 2, 1–9. https://doi.org/10.9734/AJB2T/2017/39092
Heisterkamp, I., Gandrass, J., & Ruck, W. (2004). Bioassay-directed chemical analysis utilizing LC- MS: a tool for identifying estrogenic compounds in water samples? Analytical and Bioanalytical Chemistry, 378, 709–715. https://doi.org/10.1007/s00216-003-2380-5
Heredia-García, G., Gómez-Oliván, L. M., Elizalde-Velázquez, G. A., Cardoso-Vera, J. D., Orozco-Hernández, J. M., Rosales-Pérez, K. E., García-Medina, S., Islas-Flores, H., Galar-Martínez, M., & Dublán-García, O. (2022). Multi-biomarker approach and IBR index to evaluate the effects of bisphenol A on embryonic stages of zebrafish (Danio rerio). Environmental Toxicology and Pharmacology, 94, 103925. https://doi.org/10.1016/j.etap.2022.103925
Hernández-Abreu, A., Álvarez-Torrellas, S., Rocha, R., Pereira, M., Águeda, V., Delgado, J., Larriba, M., García, J., & Figueiredo, J. (2021). Effective adsorption of the endocrine disruptor compound bisphenol a from water on surface-modified carbon materials. Applied Surface Science, 552, 149513. https://doi.org/10.1016/j.apsusc.2021.149513
Herz, C., Tran, H. T. T., Schlotz, N., Michels, K., & Lamy, E. (2017). Low-dose levels of bisphenol A inhibit telomerase via ER/GPR30-ERK signalling, impair DNA integrity and reduce cell proliferation in primary PBMC. Scientific Reports, 7, 16631. https://doi.org/10.1038/s41598-017-15978-2
Hirooka, T., Nagase, H., Uchida, K., Hiroshige, Y., Ehara, Y., Nishikawa, J., Nishihara, T., Miyamoto, K., & Hirata, Z. (2005). Biodegradation of bisphenol a and disappearance of its estrogenic activity by the green alga Chlorella fusca. Environmental Toxicology and Chemistry, 24, 1896. https://doi.org/10.1897/04-259R.1
Hofmann, U., & Schlosser, D. (2016). Biochemical and physicochemical processes contributing to the removal of endocrine-disrupting chemicals and pharmaceuticals by the aquatic ascomycete Phoma sp. UHH 5-1-03. Applied Microbiology and Biotechnology, 100, 2381–2399. https://doi.org/10.1007/s00253-015-7113-0
Hong, S. B., Hong, Y. C., Kim, J. W., Park, E. J., Shin, M. S., Kim, B. N., Yoo, H. J., Cho, I. H., Bhang, S. Y., & Cho, S. C. (2013). Bisphenol A in relation to behaviour and learning of school-age children. Journal of Child Psychology and Psychiatry, 54, 890–899. https://doi.org/10.1111/jcpp.12050
Hoque, E., Sujan, K. M., Mia, M. S., Haque, M. I., Mustari, A., Miah, M. A., & Islam, M. K. (2021). Effects of bisphenol-A (BPA) on body weight, hematological parameters, and histo-texture of kidney in swiss albino mice. Asian Journal of Medical and Biological Research, 6, 635–640. https://doi.org/10.3329/ajmbr.v6i4.51229
Hu, Y., Zhu, Q., Yan, X., Liao, C., & Jiang, G. (2019). Occurrence, fate and risk assessment of BPA and its substituents in wastewater treatment plant: A review. Environmental Research, 178, 108732. https://doi.org/10.1016/j.envres.2019.108732
Huang, W. C., Jia, X., Li, J., & Li, M. (2019). Dynamics of microbial community in the bioreactor for bisphenol S removal. Science of the Total Environment, 662, 15–21. https://doi.org/10.1016/j.scitotenv.2019.01.173
Huang, Z., Fu, W., Dou, L., Bao, H., Wu, W., Su, P., Huang, K., Zhu, P., Sheng, J., Xu, Y., Tao, F., & Hao, J. (2022). Prenatal bisphenol A exposure and early childhood behavior and cognitive function: A Chinese birth cohort study. Neuroendocrinology, 112, 311–323. https://doi.org/10.1159/000516881
Huang, Z., Zhao, J. L., Yang, Y. Y., Jia, Y. W., Zhang, Q. Q., Chen, C. E., Liu, Y. S., Yang, B., Xie, L., & Ying, G. G. (2020). Occurrence, mass loads and risks of bisphenol analogues in the Pearl River Delta region, South China: Urban rainfall runoff as a potential source for receiving rivers. Environmental Pollution, 263, 114361. https://doi.org/10.1016/j.envpol.2020.114361
Hunge, Y., Yadav, A., Khan, S., Takagi, K., Suzuki, N., Teshima, K., Terashima, C., & Fujishima, A. (2021). Photocatalytic degradation of bisphenol A using titanium dioxide@nanodiamond composites under UV light illumination. Journal of Colloid and Interface Science, 582, 1058–1066. https://doi.org/10.1016/j.jcis.2020.08.102
Hussain, R., Ghaffar, A., Abbas, G., Jabeen, G., Khan, I., Abbas, R. Z., Noreen, S., Iqbal, Z., Chaudhary, I. R., Ishaq, H. M., Ghori, M. T., & Khan, A. (2022). Thiamethoxam at sublethal concentrations induces histopathological, serum biochemical alterations and DNA damage in fish (Labeo rohita). Toxin Reviews, 41, 154–164. https://doi.org/10.1080/15569543.2020.1855655
Hyun, M., Rathor, L., Kim, H. J., McElroy, T., Hwang, K. H., Wohlgemuth, S., Curry, S., Xiao, R., Leeuwenburgh, C., Heo, J. D., & Han, S. M. (2021). Comparative toxicities of BPA, BPS, BPF, and TMBPF in the nematode Caenorhabditis elegans and mammalian fibroblast cells. Toxicology, 461, 152924. https://doi.org/10.1016/j.tox.2021.152924
Ismail, N. J., Othman, M. H. D., Abu Bakar, S., Sheikh Abdul Kadir, S. H., Abd Aziz, M. H., Pauzan, M. A. B., Hubadillah, S. K., El-badawy, T., Jaafar, J., & Rahman, M. A. (2020). Hydrothermal synthesis of TiO2 nanoflower deposited on bauxite hollow fibre membrane for boosting photocatalysis of bisphenol A. Journal of Water Process Engineering, 37, 101504. https://doi.org/10.1016/j.jwpe.2020.101504
Iso, T., Watanabe, T., Iwamoto, T., Shimamoto, A., & Furuichi, Y. (2006). DNA damage caused by bisphenol A and estradiol through estrogenic activity. Biological and Pharmaceutical Bulletin, 29, 206–210. https://doi.org/10.1248/bpb.29.206
Itoh, K., Yaoi, T., & Fushiki, S. (2012). Bisphenol A, an endocrine-disrupting chemical, and brain development. Neuropathology, 32, 447–457. https://doi.org/10.1111/j.1440-1789.2011.01287.x
Jemmeli, D., Mchiri, C., Dridi, C., Nasri, H., & Dempsey, E. (2020). Development of a new bisphenol A electrochemical sensor based on a cadmium (II) porphyrin modified carbon paste electrode. RSC Advances, 10, 31740–31747. https://doi.org/10.1039/D0RA04793G
Ji, H., Miao, M., Liang, H., Shi, H., Ruan, D., Li, Y., Wang, J., & Yuan, W. (2018). Exposure of environmental bisphenol A in relation to routine sperm parameters and sperm movement characteristics among fertile men. Scientific Reports, 8, 17548. https://doi.org/10.1038/s41598-018-35787-5
Ji, M. K., Kabra, A. N., Choi, J., Hwang, J. H., Kim, J. R., Abou-Shanab, R. A. I., Oh, Y. K., & Jeon, B. H. (2014). Biodegradation of bisphenol A by the freshwater microalgae Chlamydomonas mexicana and Chlorella vulgaris. Journal of Ecological Engineering, 73, 260–269. https://doi.org/10.1016/j.ecoleng.2014.09.070
Jin, H., & Zhu, L. (2016). Occurrence and partitioning of bisphenol analogues in water and sediment from Liaohe River Basin and Taihu Lake, China. Water Research, 103, 343–351. https://doi.org/10.1016/j.watres.2016.07.059
Jing L, Xie M, Xu Y, Tong C, Du X, Zhao H, Zhong N, Li H, & Hu J, (2023). Advanced oxidation via the synergy of C-defective/ C–O band modified ultrathin porous g-C3N4 and PMS for efficient photothermal degradation of bisphenol pollutants and lignin derivatives. Green Energy & Environment. https://doi.org/10.1016/j.gee.2023.01.006
Kandasamy, S., Muniraj, I. K., Purushothaman, N., Sekar, A., Sharmila, D. J. S., Kumarasamy, R., & Uthandi, S. (2016). High Level Secretion of Laccase (LccH) from a Newly Isolated White-Rot Basidiomycete, Hexagonia hirta MSF2. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00707
Kang, H., Wang, X., Zhang, Y., Wu, J., & Wang, H. (2015). Simultaneous extraction of bisphenol A and tetrabromobisphenol A from milk by microwave-assisted ionic liquid microextraction. RSC Advances, 5, 14631–14636. https://doi.org/10.1039/C4RA16098C
Kang, J. H., & Kondo, F. (2002). Bisphenol A degradation by bacteria isolated from river water. Archives of Environmental Contamination and Toxicology, 43, 265–269. https://doi.org/10.1007/s00244-002-1209-0
Katibi, K. K., Yu, K. F. M., Man, H. C., Aris, A. Z., Nor, M. Z. M., Azis, R. S., Goh, P. S., Zainuddin, N., & Fauzi, A. I. (2022). Development of novel fouling-resistant hollow fibre nanocomposite membrane augmented with iron oxide nanoparticles for efficient rejection of bisphenol A from water. Fouling, Permeability, and Mechanism Studies. https://doi.org/10.21203/rs.3.rs-2232905/v1
Kharrazian, D., & Vojdani, A. (2017). Correlation between antibodies to bisphenol A, its target enzyme protein disulfide isomerase, and antibodies to neuron-specific antigens: Correlation between BPA, PDI, MBP and MOG. Journal of Applied Toxicology, 37, 479–484. https://doi.org/10.1002/jat.3383
Khorshidi, N. S., Salati, A. P., & Keyvanshokooh, S. (2021). The effects of bisphenol A on liver proteome and mucus vitellogenin in comparison to plasma as a non-invasive biomarker in immature Siberian sturgeons (Acipenser baerii). Comparative Biochemistry and Physiology Part D, 38, 100795. https://doi.org/10.1016/j.cbd.2021.100795
Kiejza, D., Karpińska, J., Piotrowska-Niczyporuk, A., & Kotowska, U. (2023). Advanced oxidation of bisphenols by peracetic acid activated by light and ultrasound. Environmental Pollution, 333, 122029. https://doi.org/10.1016/j.envpol.2023.122029
Kim, D., Kwak, J. I., & An, Y. J. (2018). Effects of bisphenol A in soil on growth, photosynthesis activity, and genistein levels in crop plants (Vigna radiata). Chemosphere, 209, 875–882. https://doi.org/10.1016/j.chemosphere.2018.06.146
Kimura, Y., Takahashi, A., Kashiwada, A., & Yamada, K. (2016). Removal of bisphenol A and its derivatives from aqueous medium through laccase-catalyzed treatment enhanced by addition of polyethylene glycol. Environmental Technology, 37, 1733–1744. https://doi.org/10.1080/09593330.2015.1130752
Kolvenbach, B. A., Helbling, D. E., Kohler, H. P. E., & Corvini, P. F. X. (2014). Emerging chemicals and the evolution of biodegradation capacities and pathways in bacteria. Current Opinion in Biotechnology, 27, 8–14. https://doi.org/10.1016/j.copbio.2013.08.017
Kong, Q., Wang, Y., Zhang, L., Ge, S., & Yu, J. (2017). A novel microfluidic paper-based colorimetric sensor based on molecularly imprinted polymer membranes for highly selective and sensitive detection of bisphenol A. Sensors and Actuators, B: Chemical, 243, 130–136. https://doi.org/10.1016/j.snb.2016.11.146
Kontogiannatos, D., Swevers, L., Zakasis, G., & Kourti, A. (2015). The molecular and physiological impact of bisphenol A in Sesamia nonagrioides (Lepidoptera: Noctuidae). Ecotoxicology, 24, 356–367. https://doi.org/10.1007/s10646-014-1384-6
Kuch, H. M., & Ballschmiter, K. (2001). Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC−(NCI)−MS in the picogram per liter range. Environmental Science and Technology, 35, 3201–3206. https://doi.org/10.1021/es010034m
Kumar, A., Saini, K., & Bhaskar, T. (2020). Hydochar and biochar: Production, physicochemical properties and techno-economic analysis. Bioresource Technology, 310, 123442.
Kumawat, M., Sharma, P., Pal, N., James, M. M., Verma, V., Tiwari, R. R., Shubham, S., Sarma, D. K., & Kumar, M. (2022). Occurrence and seasonal disparity of emerging endocrine disrupting chemicals in a drinking water supply system and associated health risk. Scientific Reports, 12, 9252. https://doi.org/10.1038/s41598-022-13489-3
Kurian, J. R., Keen, K. L., Kenealy, B. P., Garcia, J. P., Hedman, C. J., & Terasawa, E. (2015). Acute influences of bisphenol A exposure on hypothalamic release of gonadotropin-releasing hormone and Kisspeptin in female rhesus monkeys. Endocrinology, 156, 2563–2570. https://doi.org/10.1210/en.2014-1634
Kusvuran, E., & Yildirim, D. (2013). Degradation of bisphenol A by ozonation and determination of degradation intermediates by gas chromatography–mass spectrometry and liquid chromatography–mass spectrometry. Bio Chemical Engineering Journal, 220, 6–14. https://doi.org/10.1016/j.cej.2013.01.064
La Rocca, C., Maranghi, F., Tait, S., Pala, A. P., Raffaelli, A., Saponaro, C., Scirè, G., Spadoni, G. L., & Busani, L. (2018). The life persuaded project approach on phthalates and bisphenol A biomonitoring in Italian mother-child pairs linking exposure and juvenile diseases. Environmental Science and Pollution Research, 25, 25618–25625. https://doi.org/10.1007/s11356-018-2660-4
Lamprea, K., Bressy, A., Mirande-Bret, C., Caupos, E., & Gromaire, M. C. (2018). Alkylphenol and bisphenol A contamination of urban runoff: An evaluation of the emission potentials of various construction materials and automotive supplies. Environmental Science and Pollution Research, 25(22), 21887–21900. https://doi.org/10.1007/s11356-018-2272-z
Lan, J., Shen, Z., Gao, W., & Liu, A. (2019). Occurrence of bisphenol-A and its brominated derivatives in tributary and estuary of Xiaoqing River adjacent to Bohai Sea, China. Marine Pollution Bulletin, 149, 110551. https://doi.org/10.1016/j.marpolbul.2019.110551
Laskawy T & Laskawy T, (2021). Scientists: BPA has widely contaminated the oceans. Grist. Retrieved July 14, 2023, from https://grist.org/article/new-evidence-that-bpa-has-widely-contaminated-the-oceans/. Accessed 17/10/2023
Lee, J., Moon, K. W., & Ji, K. (2021). Systematic review of exposure to bisphenol an alternatives and its effects on reproduction and thyroid endocrine system in zebrafish. Applied Sciences, 11, 1837. https://doi.org/10.3390/app11041837
Lee, J. S., Kim, S. G., Jun, J., Shin, D. H., & Jang, J. (2014). Aptamer-functionalized multidimensional conducting-polymer nanoparticles for an ultrasensitive and selective field-effect-transistor endocrine-disruptor sensors. Advanced Functional Materials, 24, 6145–6153. https://doi.org/10.1002/adfm.201401166
Lee, M. Y., Ahmed, I., Yu, K., Lee, C. S., Kang, K. K., Jang, M. S., & Ahn, W. S. (2021). Aqueous adsorption of bisphenol A over a porphyrinic porous organic polymer. Chemosphere, 265, 129161. https://doi.org/10.1016/j.Chemosphere.2020.129161
Lee, Y. J., Lim, Y. H., Shin, C. H., Kim, B. N., Kim, J. I., Hong, Y. C., Cho, Y. M., & Lee, Y. A. (2022). Relationship between bisphenol A, bisphenol S, and bisphenol F and serum uric acid concentrations among school-aged children. PLoS One, 17, 0268503. https://doi.org/10.1371/journal.pone.0268503
Lei, Y., Fang, L., Hamid Akash, M. S., Liu, Z., Shi, W., & Chen, S. (2013). Development and comparison of two competitive ELISAs for the detection of bisphenol A in human urine. Analytical Methods, 5, 6106. https://doi.org/10.1039/c3ay41023d
Lemos, M. F. L., van Gestel, C. A. M., & Soares, A. M. V. M. (2010). Reproductive toxicity of the endocrine disrupters vinclozolin and bisphenol A in the terrestrial isopod Porcellio scaber (Latreille, 1804). Chemosphere, 78, 907–913. https://doi.org/10.1016/j.Chemosphere.2009.10.063
Leung, Y. K., Govindarajah, V., Cheong, A., Veevers, J., Song, D., Gear, R., Zhu, X., Ying, J., Kendler, A., Medvedovic, M., Belcher, S., & Ho, S. M. (2017). Gestational high-fat diet and bisphenol A exposure heightens mammary cancer risk. Endocrine-Related Cancer, 365–378. https://doi.org/10.1530/ERC-17-0006
Li, D., Zhou, Z., Qing, D., He, Y., Wu, T., & Miao, M. (2010). Occupational exposure to bisphenol-A (BPA) and the risk of self-reported male sexual dysfunction. Human Reproduction, 25, 519–527. https://doi.org/10.1093/humrep/dep381
Li, G., Zu, L., Wong, P. K., Hui, X., Lu, Y., Xiong, J., & An, T. (2012). Biodegradation and detoxification of bisphenol A with one newly-isolated strain Bacillus sp. GZB: Kinetics, mechanism and estrogenic transition. Bioresource Technology, 114, 224–230. https://doi.org/10.1016/j.biortech.2012.03.067
Li, J., Mao, R., Zhou, Q., & Hou, L. F. (2016). Exposure to bisphenol A (BPA) in Wistar rats reduces sperm quality with disruption of ERK signal pathway. Toxicology Mechanisms and Methods, 26, 180–188. https://doi.org/10.3109/15376516.2016.1139024
Li, K., Cui, K., & Wang, Q. (2023). Adverse outcome pathway network approach to identify endocrine disruptor-induced reproductive toxicity. Current Opinion in Toxicology, 34, 100391. https://doi.org/10.1016/j.cotox.2023.100391
Li, M., Gao, X., Tan, L., Miao, Y., Fan, W., Gao, Z., Liu, S., Ding, C., Shi, X., & Song, S. (2020). Effects of bisphenol A at the safe reference dose on abdominal fat deposition in aged hens. Ecotoxicology and Environmental Safety, 206, 111398. https://doi.org/10.1016/j.ecoenv.2020.111398
Li, R., Chen, G. Z., TamNFY, L. T. G., Shin, P. K. S., Cheung, S. G., & Liu, Y. (2009). Toxicity of bisphenol A and its bioaccumulation and removal by a marine microalga Stephanodiscus hantzschii. Ecotoxicology and Environmental Safety, 72, 321–328. https://doi.org/10.1016/j.ecoenv.2008.05.012
Li, S., Tian, K., Qiu, Q., Yu, Y., Li, H., Chang, M., Sun, X., Gu, J., Zhang, F., Wang, Y., & Huo, H. (2023). Study on genomics of the bisphenol A-degrading bacterium Pseudomonas sp. P1. Water. https://doi.org/10.3390/w15040830
Li, X., Liu, Y., Chen, Y., Song, X., & Chen, X. (2022). Long-term exposure to bisphenol A and its analogues alters the behavior of marine medaka (Oryzias melastigma) and causes hepatic injury. Science of the Total Environment, 841, 156590. https://doi.org/10.1016/j.scitotenv.2022.156590
Li, Y., Zhang, H., Rashid, A., Hu, A., Xi, K., Li, H., Adyari, B., Wang, Y., Yu, C. P., & Sun, Q. (2020). Bisphenol A attenuation in natural microcosm: Contribution of ecological components and identification of transformation pathways through stable isotope tracing. Journal of Hazardous Materials, 385, 121584. https://doi.org/10.1016/j.jhazmat.2019.121584
Li, Z., Yang, Z., Shi, Q., & Sun, Y. (2023). Removal of bisphenol A by integrated adsorption and biodegradation using immobilized laccase onto defective PCN-224. Journal of Environmental Chemical Engineering, 11(3), 110166. https://doi.org/10.1016/j.jece.2023.110166
Liang, J., Li, Y., & Xie, P. (2022). Dualistic effects of bisphenol A on growth, photosynthetic and oxidative stress of duckweed (Lemna minor). Environmental Science and Pollution Research, 29, 87717–87729.
Liang, L., Zhang, J., Feng, P., Li, C., Huang, Y., Dong, B., Li, L., & Guan, X. (2015). Occurrence of bisphenol A in surface and drinking waters and its physicochemical removal technologies. Frontiers of Environmental Science & Engineering, 9, 16–38. https://doi.org/10.1007/s11783-014-0697-2
Lin, J., Liu, Y., Chen, S., Le, X., Zhou, X., Zhao, Z., Ou, Y., & Yang, J. (2016). Reversible immobilization of laccase onto metal-ion-chelated magnetic microspheres for bisphenol A removal. International Journal of Biological Macromolecules, 189–199. https://doi.org/10.1016/j.ijbiomac.2015.12.013
Liu, J., Sun, K., Zhu, R., Wang, X., Waigi, M. G., & Li, S. (2023). Biotransformation of bisphenol A in vivo and in vitro by laccase-producing Trametes hirsuta La-7: Kinetics, products, and mechanisms. Environmental Pollution, 321, 121155. https://doi.org/10.1016/j.envpol.2023.121155
Liu, J., Zhang, L., Lu, G., Jiang, R., Yan, Z., & Li, Y. (2021). Occurrence, toxicity, and ecological risk of Bisphenol A analogues in aquatic environment – A review. Ecotoxicology and Environmental Safety, 208, 111481. https://doi.org/10.1016/j.ecoenv.2020.111481
Liu, R., Zhou, J. L., & Wilding, A. (2004). Microwave-assisted extraction followed by gas chromatography–mass spectrometry for the determination of endocrine disrupting chemicals in river sediments. Journal of Chromatography A, 1038, 19–26. https://doi.org/10.1016/j.chroma.2004.03.030
Long, Z., Fan, J., Wu, G., Liu, X., Wu, H., Liu, J., & Chen, Y. (2021). Gestational bisphenol A exposure induces fatty liver development in male offspring mice through the inhibition of HNF1b and upregulation of PPARγ. Cell Biology and Toxicology, 37, 65–84. https://doi.org/10.1007/s10565-020-09535-3
Loos, R., Hanke, G., Umlauf, G., & Eisenreich, S. J. (2007). LC–MS–MS analysis and occurrence of octyl- and nonylphenol, their ethoxylates and their carboxylates in Belgian and Italian textile industry, waste water treatment plant effluents and surface waters. Chemosphere, 66, 690–699. https://doi.org/10.1016/j.Chemosphere.2006.07.060
Louati, I., Dammak, M., Nasri, R., Belbahri, L., Nasri, M., Abdelkafi, S., & Mechichi, T. (2019). Biodegradation and detoxification of bisphenol A by bacteria isolated from desert soils. 3 Biotech, 9, 228. https://doi.org/10.1007/s13205-019-1756-y
Lu, Y., Peterson, J. R., Gooding, J. J., & Lee, N. A. (2012). Development of sensitive direct and indirect enzyme-linked immunosorbent assays (ELISAs) for monitoring bisphenol-A in canned foods and beverages. Analytical and Bioanalytical Chemistry, 403, 1607–1618. https://doi.org/10.1007/s00216-012-5969-8
Luo, Z., Tu, Y., Li, H., Qiu, B., & LiuY, Y. Z. (2019). Endocrine-disrupting compounds in the Xiangjiang River of China: Spatio-temporal distribution, source apportionment, and risk assessment. Ecotoxicology and Environmental Safety, 167, 476–484. https://doi.org/10.1016/j.ecoenv.2018.10.053
Lv, Y., Ma, J., Liu, K., Jiang, Y., Yang, G., Liu, Y., Lin, C., Ye, X., Shi, Y., Liu, M., & Chen, L. (2021). Rapid elimination of trace bisphenol pollutants with porous β-cyclodextrin modified cellulose nanofibrous membrane in water: Adsorption behavior and mechanism. Journal of Hazardous Materials, 403, 123666. https://doi.org/10.1016/j.jhazmat.2020.123666
Lynch, K. (2017). Toxicology: Liquid chromatography mass spectrometry (pp. 109–130). Mass Spectrometry for the Clinical Laboratory. https://doi.org/10.1016/b978-0-12-800871-3.00006-7
Ma, K., Ranjith, K. S., Sivaraj, R., Kumar, R. T., & Abdul Salam, H. (2014). Photocatalytic degradation of endocrine disruptor bisphenol-A in the presence of prepared CexZn1−xO nanocomposites under irradiation of sunlight. Journal of Environmental Sciences, 26, 2362–2368. https://doi.org/10.1016/j.jes.2014.09.022
Ma, L., Hu, J., Li, J., & Yang, S. (2018). Bisphenol A promotes hyperuricemia via activating xanthine oxidase. The Faseb Journal, 32, 1007–1016. https://doi.org/10.1096/fj.201700755R
Ma, Y., Liu, H., Petlulu, P., Chen, X., & Zhang, H. (2019). The adverse health effects of bisphenol A and related toxicity mechanisms. International Journal of Environmental Research, 176, 108575. https://doi.org/10.1016/j.envres.2019.108575
Mahmoud, A. E. D. (2020). Graphene-based nanomaterials for the removal of organic pollutants: Insights into linear versus nonlinear mathematical models. Journal of Environmental Management, 270, 110911. https://doi.org/10.1016/j.jenvman.2020.110911
Malea, P., Kokkinidi, D., Kevrekidou, A., & Adamakis, I. D. S. (2020). Environmentally relevant bisphenol A concentrations effects on the seagrass Cymodocea nodosa different parts elongation: Perceptive assessors of toxicity. Environmental Science and Pollution Research, 27, 7267–7279. https://doi.org/10.1007/s11356-019-07443-6
Manukyan, L., Dunder, L., Lind, P. M., Bergsten, P., & Lejonklou, M. H. (2019). Developmental exposure to a very low dose of bisphenol A induces persistent islet insulin hypersecretion in Fischer 344 rat offspring. Environmental Research, 172, 127–136. https://doi.org/10.1016/j.envres.2019.02.009
Marrakchi, F., Fazeli Zafar, F., Wei, M., & Wang, S. (2021). Cross-linked FeCl3-activated seaweed carbon/MCM-41/alginate hydrogel composite for effective biosorption of bisphenol A plasticizer and basic dye from aqueous solution. Bioresource Technology, 331, 125046. https://doi.org/10.1016/j.biortech.2021.125046
Masár, M., Hradski, J., Schmid, M. G., & Szucs, R. (2020). Advantages and pitfalls of capillary electrophoresis of pharmaceutical compounds and their enantiomers in complex samples: Comparison of hydrodynamically opened and closed systems. International Journal of Molecular Sciences, 21(18), 6852. https://doi.org/10.3390/ijms21186852
Masuda, M., Yamasaki, Y., Ueno, S., & Inoue, A. (2007). Isolation of bisphenol A-tolerant/degrading Pseudomonas monteilii strain N-502. Extremophiles, 11, 355–362. https://doi.org/10.1007/s00792-006-0047-9
Matsumura, Y., Hosokawa, C., Sasaki-Mori, M., Akahira, A., Fukunaga, K., Ikeuchi, T., Oshiman, K. I., & Tsuchido, T. (2009). Isolation and characterization of novel bisphenol-a-degrading bacteria from soils. Biocontrol Science and Technology, 14, 161–169. https://doi.org/10.4265/bio.14.161
Matuszczak, E., Komarowska, M. D., Debek, W., & Hermanowicz, A. (2019). The Impact of bisphenol a on fertility, reproductive system, and development: A review of the literature. International Journal of Endocrinology, 2019, 1–8. https://doi.org/10.1155/2019/4068717
Mayolo-Deloisa, K., González-González, M., & Rito-Palomares, M. (2020). Laccases in food industry: Bioprocessing, potential industrial and biotechnological applications. Frontiers in Bioengineering and Biotechnology, 8, 222. https://doi.org/10.3389/fbioe.2020.00222
Mazur, C. S., Marchitti, S. A., & Zastre, J. (2015). P-glycoprotein inhibition by the agricultural pesticide propiconazole and its hydroxylated metabolites: Implications for pesticide–drug interactions. Toxicology Letters, 232(1), 37–45. https://doi.org/10.1016/j.toxlet.2014.09.020
Meeker, J. D., Ehrlich, S., Toth, T. L., Wright, D. L., Calafat, A. M., Trisini, A. T., Ye, X., & Hauser, R. (2010). Semen quality and sperm DNA damage in relation to urinary bisphenol A among men from an infertility clinic. Reproductive Toxicology, 30, 532–539. https://doi.org/10.1016/j.reprotox.2010.07.005
Mei, S., Wu, D., Jiang, M., Lu, B., Lim, J. M., Zhou, Y. K., & Lee, Y. I. (2011). Determination of trace bisphenol A in complex samples using selective molecularly imprinted solid-phase extraction coupled with capillary electrophoresis. The Microchemical Journal, 98, 150–155. https://doi.org/10.1016/j.microc.2011.01.003
Meli, R., Monnolo, A., Annunziata, C., Pirozzi, C., & Ferrante, M. C. (2020). Oxidative stress and BPA toxicity: An antioxidant approach for male and female reproductive dysfunction. Antioxidants, 9(5), 405. https://doi.org/10.3390/antiox9050405
Meneses, I. P., Novaes, S. D., Dezotti, R. S., Oliveira, P. V., & Petri, D. F. S. (2022). CTAB-modified carboxymethyl cellulose/bagasse cryogels for the efficient removal of bisphenol A, methylene blue and Cr (VI) ions: Batch and column adsorption studies. Journal of Hazardous Materials, 421, 126804. https://doi.org/10.1016/j.jhazmat.2021.126804
Mentor, A., Bornehag, C. G., Jönsson, M., & Mattsson, A. (2020). A suggested bisphenol A metabolite (MBP) interfered with reproductive organ development in the chicken embryo while a human-relevant mixture of phthalate monoesters had no such effects. Journal of Toxicology and Environmental Health, Part A, 83, 66–81. https://doi.org/10.1080/15287394.2020.1728598
Mersha, M. D., Patel, B. M., Patel, D., Richardson, B. N., & Dhillon, H. S. (2015). Effects of BPA and BPS exposure limited to early embryogenesis persist to impair non-associative learning in adults. Behavioural and Brain Functions, 11, 27. https://doi.org/10.1186/s12993-015-0071-y
Metwally, F. M., Rashad, H., Zeidan, H. M., Kilany, A., & Abdol Raouf, E. R. (2018). Study of the effect of bisphenol A on oxidative stress in children with autism spectrum disorders. Indian Journal of Clinical Biochemistry, 33, 196–201. https://doi.org/10.1007/s12291-017-0667-0
Michałowicz, J. (2014). Bisphenol A – Sources, toxicity, and biotransformation. Environmental Toxicology and Pharmacology, 37, 738–758. https://doi.org/10.1016/j.etap.2014.02.003
Minatoya, M., Araki, A., Nakajima, S., Sasaki, S., Miyashita, C., Yamazaki, K., Yamamoto, J., Matumura, T., & Kishi, R. (2017). Cord blood bpa level and child neurodevelopment and behavioral problems: The Hokkaido study on environment and children’s health. Science of the Total Environment, 608, 351–356. https://doi.org/10.1016/j.scitotenv.2017.06.060
Mínguez-Alarcón, L., & Gaskins, A. J. (2017). Female exposure to endocrine disrupting chemicals and fecundity: A review. Current Opinion in Obstetrics and Gynaecology, 29, 202–211. https://doi.org/10.1097/GCO.0000000000000373
Mirzaee, S. A., Jaafarzadeh, N., Jorfi, S., Gomes, H. T., & Ahmadi, M. (2018). Enhanced degradation of bisphenol A from high saline polycarbonate plant wastewater using wet air oxidation process. Process Safety and Environmental Protection, 120, 321–330. https://doi.org/10.1016/j.psep.2018.09.021
Mizuta, K., Fujita, T., Yamagata, H., & Kumamoto, E. (2017). Bisphenol A inhibits compound action potentials in the frog sciatic nerve in a manner independent of estrogen receptors. Biochemistry and Biophysics Reports, 10, 145–151. https://doi.org/10.1016/j.bbrep.2017.03.006
Modi, A., & Bellare, J. (2019). Copper sulfide nanoparticles/carboxylated graphene oxide nanosheets blended polyethersulfone hollow fiber membranes: Development and characterization for efficient separation of oxybenzone and bisphenol A from water. Polymer, 163, 57–67. https://doi.org/10.1016/j.polymer.2018.12.040
Mohapatra, D. P., Brar, S. K., Tyagi, R. D., & Surampalli, R. Y. (2011). Occurrence of bisphenol A in wastewater and wastewater sludge of CUQ treatment plant. Journal of Xenobiotics, 1, 3. https://doi.org/10.4081/xeno.2011.e3
Molina-Molina, J. M., Jiménez-Díaz, I., Fernández, M. F., Rodriguez-Carrillo, A., Peinado, F. M., Mustieles, V., Barouki, R., Piccoli, C., Olea, N., & Freire, C. (2019). Determination of bisphenol A and bisphenol S concentrations and assessment of estrogen- and anti-androgen-like activities in thermal paper receipts from Brazil, France, and Spain. Environmental Research, 170, 406–415. https://doi.org/10.1016/j.envres.2018.12.046
Montagner, C., Sodré, F., Acayaba, R., Vidal, C., Campestrini, I., Locatelli, M., Pescara, I., Albuquerque, A., Umbuzeiro, G., & Jardim, W. (2018). Ten years-snapshot of the occurrence of emerging contaminants in drinking, surface and ground waters and wastewaters from São Paulo State. Journal of the Brazilian Chemical Society. https://doi.org/10.21577/0103-5053.20180232
Mousavi, S. E., Delgado-Saborit, J. M., Adivi, A., Pauwels, S., & Godderis, L. (2022). Air pollution and endocrine disruptors induce human microbiome imbalances: A systematic review of recent evidence and possible biological mechanisms. Science of the Total Environment, 816, 151654. https://doi.org/10.1016/j.scitotenv.2021.151654
Mpatani, F. M., Aryee, A. A., Kani, A. N., Guo, Q., Dovi, E., Qu, L., Li, Z., & Han, R. (2020). Uptake of micropollutant-bisphenol A, methylene blue and neutral red onto a novel bagasse-β-cyclodextrin polymer by adsorption process. Chemosphere, 259, 127439.
Mukhopadhyay, M., & Chakraborty, P. (2021). Plasticizers and bisphenol A: Emerging organic pollutants along the lower stretch of River Ganga, north-east coast of the Bay of Bengal. Environmental Pollution, 276, 116697. https://doi.org/10.1016/j.envpol.2021.116697
Murugadas, A., Mahamuni, D., Nirmaladevi, S. D., Thamaraiselvi, K., Thirumurugan, R., & Akbarsha, M. A. (2019). Hydra as an alternative model organism for toxicity testing: Study using the endocrine disrupting chemical Bisphenol A. Biocatalysis and Agricultural Biotechnology, 17, 680–684. https://doi.org/10.1016/j.bcab.2019.01.009
Nair, V. A., Valo, S., Peltomäki, P., Bajbouj, K., & Abdel-Rahman, W. M. (2020). Oncogenic potential of bisphenol a and common environmental contaminants in human mammary epithelial cells. International Journal of Molecular Sciences, 21, 3735. https://doi.org/10.3390/ijms21103735
Namat, A., Xia, W., Xiong, C., Wu, Y., & Li, J. (2021). Association of BPA exposure during pregnancy with risk of preterm birth and changes in gestational age: A meta-analysis and systematic review. Ecotoxicology and Environmental Safety, 220, 112400. https://doi.org/10.1016/j.ecoenv.2021.112400
Nasab, H., Rajabi, S., Mirzaee, M., & Hashemi, M. (2022). Association of urinary triclosan, methyl triclosan, triclocarban, and 2,4-dichlorophenol levels with anthropometric and demographic parameters in children and adolescents in 2020 (case study: Kerman, Iran). Environmental Science and Pollution Research, 29, 30754–30763. https://doi.org/10.1007/s11356-021-18466-3
Nasseri, S., Ebrahimi, S., Abtahi, M., & Saeedi, R. (2018). Synthesis and characterization of polysulfone/graphene oxide nano-composite membranes for removal of bisphenol A from water. Journal of Environmental Management, 205, 174–182. https://doi.org/10.1016/j.jenvman.2017.09.074
Ndagijimana, P., Liu, X., Li, Z., Yu, G., & Wang, Y. (2020). The synthesis strategy to enhance the performance and cyclic utilization of granulated activated carbon-based sorbent for bisphenol A and triclosan removal. Environmental Science and Pollution Research, 27(13), 15758–15771. https://doi.org/10.1007/s11356-020-08095-7
Neisi, A., Rahmani, A. R., Ghafari, S., Jorfi, S., & Almasi, H. (2020). Biodegradation of bisphenol A in a saline industrial wastewater using Alcaligenes faecalis strain BPAN5. Desalination and Water Treatment, 189, 276–282. https://doi.org/10.5004/dwt.2020.25603
Nguyen, L. N., Hai, F. I., Dosseto, A., Richardson, C., Price, W. E., & Nghiem, L. D. (2016). Continuous adsorption and biotransformation of micropollutants by granular activated carbon-bound laccase in a packed-bed enzyme reactor. Bioresource Technology, 210, 108–116. https://doi.org/10.1016/j.biortech.2016.01.014
Nichols, J. W., Du, B., Berninger, J. P., Connors, K. A., Chambliss, C. K., Erickson, R. J., Hoffman, A. D., & Brooks, B. W. (2015). Observed and modeled effects of pH on bioconcentration of diphenhydramine, a weakly basic pharmaceutical, in fathead minnows: pH influence on BCF of diphenhydramine in fathead minnows. Environmental Toxicology and Chemistry, 34, 1425–1435. https://doi.org/10.1002/etc.2948
Nieminen, P., Mustonen, A. M., Lindström-Seppä, P., Asikainen, J., Mussalo-Rauhamaa, H., & Kukkonen, J. V. K. (2002). Phytosterols act as endocrine and metabolic disruptors in the European Polecat (Mustela putorius). Toxicology and Applied Pharmacology, 178, 22–28. https://doi.org/10.1006/taap.2001.9315
Niu, Y., Zhu, M., Dong, M., Li, J., Li, Y., Xiong, Y., Liu, P., & Qin, Z. (2021). Bisphenols disrupt thyroid hormone (TH) signaling in the brain and affect TH-dependent brain development in Xenopus laevis. Aquatic Toxicology, 237, 105902. https://doi.org/10.1016/j.aquatox.2021.105902
Noszczyńska, M., Chodór, M., Jałowiecki, Ł., & Piotrowska-Seget, Z. (2021). A comprehensive study on bisphenol A degradation by newly isolated strains Acinetobacter sp. K1MN and Pseudomonas sp. BG12. Biodegradation, 32, 1–15. https://doi.org/10.1007/s10532-020-09919-6
Noszczyńska, M., & Piotrowska-Seget, Z. (2018). Bisphenols: Application, occurrence, safety, and biodegradation mediated by bacterial communities in wastewater treatment plants and rivers. Chemosphere, 201, 214–223. https://doi.org/10.1016/j.Chemosphere.2018.02.179
Oehlmann, J., Schulte-Oehlmann, U., Van Look, K. J. W., & Tyler, C. R. (2009). A critical analysis of the biological impacts of plasticizers on wildlife. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 2047–2062. https://doi.org/10.1098/rstb.2008.0242
Ohore, O. E., & Zhang, S. (2019). Endocrine disrupting effects of bisphenol A exposure and recent advances on its removal by water treatment systems. A review. Scientific African. https://doi.org/10.1016/j.sciaf.2019.e00135
Olukole, S. G., Lanipekun, D. O., Ola-Davies, E. O., & Oke, B. O. (2019). Melatonin attenuates bisphenol A-induced toxicity of the adrenal gland of Wistar rats. Environmental Science and Pollution Research, 26, 5971–5982. https://doi.org/10.1007/s11356-018-4024-5
Ominski, K., McAllister, T., Stanford, K., Mengistu, G., Kebebe, E. G., Omonijo, F., Cordeiro, M., Legesse, G., & Wittenberg, K. (2021). Utilization of by-products and food waste in livestock production systems: A Canadian perspective. Frontiers in Animal Science, 11, 55–63. https://doi.org/10.1093/af/vfab004
Ortiz-Martínez, K., Reddy, P., Cabrera-Lafaurie, W. A., Román, F. R., & Hernández-Maldonado, A. J. (2016). Single and multi-component adsorptive removal of bisphenol A and 2,4-dichlorophenol from aqueous solutions with transition metal modified inorganic–organic pillared clay composites: Effect of pH and presence of humic acid. Journal of Hazardous Materials, 312, 262–271. https://doi.org/10.1016/j.jhazmat.2016.03.073
Othman, A. I., Edrees, G. M., El-Missiry, M. A., Ali, D. A., Aboel-Nour, M., & Dabdoub, B. R. (2016). Melatonin controlled apoptosis and protected the testes and sperm quality against bisphenol A-induced oxidative toxicity. Toxicology and Industrial Health, 32, 1537–1549. https://doi.org/10.1177/0748233714561286
Özel, Ş., Tokmak, A., Aykut, O., Aktulay, A., Hançerlioğulları, N., & Engin Ustun, Y. (2019). Serum levels of phthalates and bisphenol-A in patients with primary ovarian insufficiency. Gynaecology and Endocrinology, 35, 364–367. https://doi.org/10.1080/09513590.2018.1534951
Ozhan, K., & Kocaman, E. (2019). Temporal and spatial distributions of bisphenol A in marine and freshwaters in Turkey. Archives in Environmental Contamination and Toxicology, 76, 246–254.
Padmanabhan, V., Song, W., & Puttabyatappa, M. (2021). Praegnatio Perturbatio—Impact of endocrine-disrupting chemicals. Endocrine Reviews, 42, 295–353. https://doi.org/10.1210/endrev/bnaa035
Pan, Y., Huang, W., Zhou, Y., Liu, F., Zhu, C., Pang, H., Tan, J., & Xu, B. (2023). Covalent-crosslinking IRMOF-3-NH2/PVC ultrafiltration membrane for simultaneous removal of bisphenol A and Cd2+ ions in water. Journal of Cleaner Production, 403, 136868. https://doi.org/10.1016/j.jclepro.2023.136868
Pang, R., Li, M., & Zhang, C. (2015). Degradation of phenolic compounds by laccase immobilized on carbon nanomaterials: Diffusional limitation investigation. Talanta, 131, 38–45. https://doi.org/10.1016/j.talanta.2014.07.045
Pardo, I., & Camarero, S. (2015). Laccase engineering by rational and evolutionary design. Cellular and Molecular Life Sciences, 72, 897–910. https://doi.org/10.1007/s00018-014-1824-8
Park, C., Lee, J., Kong, B., Park, J., Song, H., Choi, K., Guon, T., & Lee, Y. (2019). The effects of bisphenol A, benzyl butyl phthalate, and di(2-ethylhexyl) phthalate on estrogen receptor alpha in estrogen receptor-positive cells under hypoxia. Environmental Pollution, 248, 774–781. https://doi.org/10.1016/j.envpol.2019.02.069
Pedersen, S. N., & Lindhols, C. (1999). Quantification of the xenoestrogens 4-tert. -octylphenol and bisphenol A in water and in fish tissue based on microwave assisted extraction, solid-phase extraction and liquid chromatography-mass spectrometry. Journal of Applied Physiology, 864, 17–24. https://doi.org/10.1016/s0021-9673(99)01011-0
Peng, X., Wang, Z., Yang, C., Chen, F., & Mai, B. (2006). Simultaneous determination of endocrine-disrupting phenols and steroid estrogens in sediment by gas chromatography–mass spectrometry. Journal of Chromatography A, 1116, 51–56. https://doi.org/10.1016/j.chroma.2006.03.017
Pinney, S. E., Mesaros, C. A., Snyder, N. W., Busch, C. M., Xiao, R., Aijaz, S., Ijaz, N., Blair, I. A., & Manson, J. M. (2017). Second trimester amniotic fluid bisphenol A concentration is associated with decreased birth weight in term infants. Reproductive Toxicology, 67, 1–9. https://doi.org/10.1016/j.reprotox.2016.11.007
Pojana, G., Gomiero, A., Jonkers, N., & Marcomini, A. (2007). Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment, and biota of a coastal lagoon. Environment International, 33, 929–936. https://doi.org/10.1016/j.envint.2007.05.003
Pollack, A. Z., Mumford, S. L., Krall, J. R., Carmichael, A. E., Sjaarda, L. A., Perkins, N. J., Kannan, K., & Schisterman, E. F. (2018). Exposure to bisphenol A, chlorophenols, benzophenones, and parabens in relation to reproductive hormones in healthy women: A chemical mixture approach. Environment International, 120, 137–144. https://doi.org/10.1016/j.envint.2018.07.028
Powell, C., Mesnage, R., Antoniou, M. N., & Vandenberg, L. N. (2023). Low dose effects of environmental chemicals: Bisphenol A as a case study. Biomedical Sciences. https://doi.org/10.1016/b978-0-12-824315-2.00762-4
Pugsley, K., Scherer, S. W., Bellgrove, M. A., & Hawi, Z. (2022). Environmental exposures associated with elevated risk for autism spectrum disorder may augment the burden of deleterious de novo mutations among probands. Molecular Psychiatry, 27, 710–730. https://doi.org/10.1038/s41380-021-01142-w
Radwan, M., Wielgomas, B., Dziewirska, E., Radwan, P., Kałużny, P., Klimowska, A., Hanke, W., & Jurewicz, J. (2018). Urinary bisphenol A levels and male fertility. American Journal of Men’s Health, 12, 2144–2151. https://doi.org/10.1177/1557988318799163
Reddy, P. V. L., Kim, K.-H., Kavitha, B., Kumar, V., Raza, N., & Kalagara, S. (2018). Photocatalytic degradation of bisphenol A in aqueous media: A review. Journal of Environmental Management, 213, 189–205.
Research and Markets. (2023). Bisphenol A (BPA): World Market Outlook up to 2032. In https://www.researchandmarkets.com/. Retrieved July 8, 2023, from https://www.researchandmarkets.com/reports/3150624/bisphenol-a-bpa-2023-world-market-outlook-up#product%2D%2Ddescription. Accessed 17/10/2023
Roberts, S., Higgins, C., & McCray, J. (2014). Sorption of Emerging Organic Wastewater Contaminants to Four Soils. Water, 6, 1028–1042. https://doi.org/10.3390/w6041028
Rochester, J. R. (2013). Bisphenol A and human health: A review of the literature. Reproductive Toxicology, 42, 132–155. https://doi.org/10.1016/j.reprotox.2013.08.008
Rochester, J. R., & Bolden, A. L. (2015). Bisphenol S and F: A systematic review and comparison of the hormonal activity of bisphenol a substitutes. Environmental Health Perspectives, 123(7), 643–650. https://doi.org/10.1289/ehp.1408989
Rodosthenous, R. S., Baccarelli, A. A., Mansour, A., Adir, M., Israel, A., Racowsky, C., Hauser, R., Bollati, V., & Machtinger, R. (2019). Supraphysiological concentrations of bisphenol an alter the expression of extracellular vesicle-enriched mirnas from human primary granulosa cells. Toxicology Science, 169, 5–13. https://doi.org/10.1093/toxsci/kfz020
Rodríguez-Couto, S. (2023). Biotransformation of bisphenol A by laccase enzymes. Emerging Technologies in Applied and Environmental Microbiology, 111–125. https://doi.org/10.1016/b978-0-323-99895-6.00005-8
Rodriguez-Mozaz, S., López de Alda, M. J., & Barceló, D. (2004). Monitoring of estrogens, pesticides and bisphenol A in natural waters and drinking water treatment plants by solid-phase extraction–liquid chromatography–mass spectrometry. Journal of Chromatography A, 1045, 85–92. https://doi.org/10.1016/j.chroma.2004.06.040
Roh, H., Subramanya, N., Zhao, F., Yu, C. P., Sandt, J., & Chu, K. H. (2009). Biodegradation potential of wastewater micropollutants by ammonia-oxidizing bacteria. Chemosphere, 77, 1084–1089. https://doi.org/10.1016/j.Chemosphere.2009.08.049
Rotimi, O. A., Olawole, T. D., De Campos, O. C., Adelani, I. B., & Rotimi, S. O. (2021). Bisphenol A in Africa: A review of environmental and biological levels. Science of the Total Environment, 764, 142854. https://doi.org/10.1016/j.scitotenv.2020.142854
Rubin, B. S. (2011). Bisphenol A: An endocrine disruptor with widespread exposure and multiple effects. The Journal of Steroid Biochemistry and Molecular Biology, 127, 27–34. https://doi.org/10.1016/j.jsbmb.2011.05.002
Ruiz-Pino, F., Miceli, D., Franssen, D., Vazquez, M. J., Farinetti, A., Castellano, J. M., Panzica, G., & Tena-Sempere, M. (2019). Environmentally relevant perinatal exposures to bisphenol a disrupt postnatal kiss1/nkb neuronal maturation and puberty onset in female mice. Environmental Health Perspectives, 127, 107011. https://doi.org/10.1289/EHP5570
Ruthsatz, K., Dausmann, K. H., Paesler, K., Babos, P., Sabatino, N. M., Peck, M. A., & Glos, J. (2020). Shifts in sensitivity of amphibian metamorphosis to endocrine disruption: The common frog (Rana temporaria) as a case study. Conservation Physiology, 8, 100. https://doi.org/10.1093/conphys/coaa100
Sabry, R., Nguyen, M., Younes, S., & Favetta, L. (2022). BPA and its analogs increase oxidative stress levels in in vitro cultured granulosa cells by altering anti-oxidant enzymes expression. Molecular and Cellular Endocrinology, 545, 111574. https://doi.org/10.1016/j.mce.2022.111574
Salapasidou, M., Samara, C., & Voutsa, D. (2011). Endocrine disrupting compounds in the atmosphere of the urban area of Thessaloniki, Greece. Atmospheric Environment, 45(22), 3720–3729. https://doi.org/10.1016/j.atmosenv.2011.04.025
Sangeetha, S., Vimalkumar, K., & Loganathan, B. G. (2021). Environmental contamination and human exposure to select endocrine-disrupting chemicals: A review. Sustainable Chemistry. https://doi.org/10.3390/suschem2020020
Santhi, V. A., Sakai, N., Ahmad, E. D., & Mustafa, A. M. (2012). Occurrence of bisphenol A in surface water, drinking water and plasma from Malaysia with exposure assessment from consumption of drinking water. Science of the Total Environment, 428, 332–338. https://doi.org/10.1016/j.scitotenv.2012.04.04
Sardar, M. F., Chen, Z., Tang, C., Zhang, S., Fang, L., Miao, D., Li, Y., Zhang, Q., & Li, Y. (2023). Seasonal linkages between soil nitrogen mineralization and the microbial community in broadleaf forests with Moso bamboo (Phyllostachys edulis) invasion. Science of the Total Environment, 899, 165557. https://doi.org/10.1016/j.scitotenv.2023.165557
Sarkar, A., Gogoi, N., & Roy, S. (2022). Bisphenol-A incite dose-dependent dissimilitude in the growth pattern, physiology, oxidative status, and metabolite profile of Azolla filiculoides. Environmental Science and Pollution Research, 1–20. https://doi.org/10.1007/s11356-022-22107-8
Sasaki, M., Maki, J., Oshiman, K., Matsumura, Y., & Tsuchido, T. (2005). Biodegradation of bisphenol A by cells and cell lysate from Sphingomonas sp. strain AO1. Biodegradation, 16, 449–459. https://doi.org/10.1007/s10532-004-5023-4
Shamhari, A.’‘. A., Abd Hamid, Z., Budin, S. B., Shamsudin, N. J., & Taib, I. S. (2021). Bisphenol A and its analogues deteriorate the hormones physiological function of the male reproductive system: A mini-review. Biomedicines, 9, 1744. https://doi.org/10.3390/biomedicines9111744
Shankar, A., & Teppala, S. (2011). Relationship between urinary bisphenol A levels and diabetes mellitus. The Journal of Clinical Endocrinology & Metabolism, 96, 3822–3826. https://doi.org/10.1210/jc.2011-1682
Shankar, S., & Nill, S. (2011). Laccase production and enzymatic modification of lignin by a novel Peniophora sp. Applied Biochemistry and Biotechnology, 166(4), 1082–1094. https://doi.org/10.1007/s12010-011-9496-4
Shankar, S., & Nill, S. (2015). Effect of metal ions and redox mediators on decolorization of synthetic dyes by crude laccase from a novel white rot fungus Peniophora sp. (NFCCI-2131). Applied Biochemistry and Biotechnology, 175(1), 648–648. https://doi.org/10.1007/s12010-015-1482-9
Sharma, J., Mishra, I., Dionysiou, D. D., & Kumar, V. (2015). Oxidative removal of bisphenol A by UV-C/peroxymonosulfate (PMS): Kinetics, influence of co-existing chemicals and degradation pathway. Chemical Engineering Journal, 276, 193–204.
Sharma, N., & Leung, I. K. H. (2021). Novel thermophilic bacterial laccase for the degradation of aromatic organic pollutants. Frontiers in Chemistry, 9, 711345. https://doi.org/10.3389/fchem.2021.711345
Sharma, P., & Chadha, P. (2021). Bisphenol A induced toxicity in blood cells of freshwater fish Channa punctatus after acute exposure. Saudi Journal of Biological Sciences, 28, 4738–4750. https://doi.org/10.1016/j.sjbs.2021.04.088
Shen, Y., Zheng, Y., Jiang, J., Liu, Y., Luo, X., Shen, Z., Chen, A., & Yuan, W. (2015). Higher urinary bisphenol a concentration is associated with unexplained recurrent miscarriage risk: Evidence from a case-control study in eastern china. PLoS One, 10, e0127886. https://doi.org/10.1371/journal.pone.0127886
Shirani, M., Alizadeh, S., Mahdavinia, M., & Dehghani, M. A. (2019). The ameliorative effect of quercetin on bisphenol A-induced toxicity in mitochondria isolated from rats. Environmental Science and Pollution Research, 26, 7688–7696. https://doi.org/10.1007/s11356-018-04119-5
Sideridou, I., Tserki, V., & Papanastasiou, G. (2002). Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials, 23, 1819–1829. https://doi.org/10.1016/S0142-9612(01)00308-8
Sideridou, I. D., & Achilias, D. S. (2005). Elution study of unreacted Bis-GMA, TEGDMA, UDMA, and Bis-EMA from light-cured dental resins and resin composites using HPLC. Journal of Biomedical Materials Research Part B: Biomaterials, 74B, 617–626. https://doi.org/10.1002/jbm.b.30252
Singh, D., & Gupta, N. (2020). Microbial laccase: A robust enzyme and its industrial applications. Biologia, 75, 1183–1193. https://doi.org/10.2478/s11756-019-00414-9
Song, H., Zhang, T., Yang, P., Li, M., & Yang, Y. (2015). Low doses of bisphenol A stimulate the proliferation of breast cancer cells via ERK1/2/ERRγ signals. Toxicology in Vitro, 30, 521–528. https://doi.org/10.1016/j.tiv.2015.09.009
Song, N., Cao, D., Luo, X., Wang, Q., Ding, P., & Shi, L. (2020). Highly thermally conductive polypropylene/graphene composites for thermal management. Composites Part A: Applied Science and Manufacturing, 135, 105912. https://doi.org/10.1016/j.compositesa.2020.105912
Song, S., Duan, Y., Zhang, T., Zhang, B., Zhao, Z., Bai, X., Xie, L., He, Y., Ouyang, J. P., Huang, X., & Sun, H. (2019). Serum concentrations of bisphenol A and its alternatives in elderly population living around e-waste recycling facilities in China: associations with fasting blood glucose. Ecotoxicology and Environmental Safety, 169, 822–828. https://doi.org/10.1016/j.ecoenv.2018.11.101
Spanier, A. J., Kahn, R. S., Kunselman, A., Schaefer, E. W., Hornung, R., Xu, Y., Calafat, A. M., & Lanphear, B. P. (2014). Bisphenol an exposure and the development of wheeze and lung function in children through age 5 years. JAMA Pediatrics, 168, 1131. https://doi.org/10.1001/jamapediatrics.2014.1397
Srivastava, A., Singh, M., Karsauliya, K., Mondal, D. P., Khare, P., Singh, S., & Pratap Singh, S. (2020). Effective elimination of endocrine disrupting bisphenol A and S from drinking water using phenolic resin-based activated carbon fiber: Adsorption, thermodynamic and kinetic studies. Environmental Nanotechnology, Monitoring & Management, 14, 100316. https://doi.org/10.1016/j.enmm.2020.100316
Staniszewska, M., Falkowska, L., Grabowski, P., Kwaśniak, J., Mudrak-Cegiołka, S., Reindl, A. R., Sokołowski, A., Szumiło, E., & Zgrundo, A. (2014). Bisphenol A, 4-tert-octylphenol, and 4-nonylphenol in The Gulf of Gdańsk (Southern Baltic). Archives of Environmental Contamination and Toxicology, 67(3), 335–347. https://doi.org/10.1007/s00244-014-0023-9
Staples, C., Friederich, U., Hall, T., Klecka, G., Mihaich, E., Ortego, L., Caspers, N., & Hentges, S. (2010). Estimating potential risks to terrestrial invertebrates and plants exposed to bisphenol A in soil amended with activated sludge biosolids. Environmental Toxicology and Chemistry, 29(2), 467–475. https://doi.org/10.1002/etc.49
Sun, F., Kang, L., Xiang, X., Li, H., Luo, X., Luo, R., Lu, C., & Peng, X. (2016). Recent advances and progress in the detection of bisphenol A. Analytical and Bioanalytical Chemistry, 408(25), 6913–6927. https://doi.org/10.1007/s00216-016-9791-6
Sun, H., Wang, L., & Zhou, Q. (2012). Effects of bisphenol A on growth and nitrogen nutrition of roots of soybean seedlings. Environmental Toxicology and Chemistry, 32(1), 174–180. https://doi.org/10.1002/etc.2042
Sun, X., Li, D., Liang, H., Miao, M., Song, X., Wang, Z., Zhou, Z., & Yuan, W. (2018). Maternal exposure to bisphenol A and anogenital distance throughout infancy: A longitudinal study from Shanghai, China. Environment International, 121, 269–275. https://doi.org/10.1016/j.envint.2018.08.055
Supong, A., Bhomick, P. C., Baruah, M., Pongener, C., Sinha, U. B., & Sinha, D. (2019). Adsorptive removal of bisphenol A by biomass activated carbon and insights into the adsorption mechanism through density functional theory calculations. Sustainable Chemistry and Pharmacy, 13, 100159. https://doi.org/10.1016/j.scp.2019.100159
Suyamud, B., Inthorn, D., Panyapinyopol, B., & Thiravetyan, P. (2018). Biodegradation of bisphenol A by a newly isolated Bacillus megaterium strain ISO-2 from a polycarbonate industrial wastewater. Water, Air, & Soil Pollution, 229, 348. https://doi.org/10.1007/s11270-018-3983-y
Szafran, A. T., Stossi, F., Mancini, M. G., Walker, C. L., & Mancini, M. A. (2017). Characterizing properties of non-estrogenic substituted bisphenol analogs using high throughput microscopy and image analysis. PLoS One, 12(7), e0180141. https://doi.org/10.1371/journal.pone.0180141
Taghizadeh, T., Talebian-Kiakalaieh, A., Jahandar, H., Amin, M., Tarighi, S., & Faramarzi, M. A. (2020). Biodegradation of bisphenol A by the immobilized laccase on some synthesized and modified forms of zeolite Y. Journal of Hazardous Materials, 386, 121950.
Takahashi, A., Higashitani, T., Yakou, Y., Saitou, M., Tamamoto, H., & Tanaka, H. (2003). Evaluating bioaccumulation of suspected endocrine disruptors into periphytons and benthos in the Tama River. Water Science and Technology, 47, 71–76.
Tan, L., Wang, S., Wang, Y., He, M., & Liu, D. (2015). Bisphenol A exposure accelerated the aging process in the nematode Caenorhabditis elegans. Toxicology Letters, 235, 75–83. https://doi.org/10.1016/j.toxlet.2015.03.010
Tang, T., Hou, J., Ai, S., Qiu, Y., Ma, Q., & Han, R. (2010). Electroenzymatic oxidation of bisphenol A (BPA) based on the haemoglobin (Hb) film in a membrane less electrochemical reactor. Journal of Hazardous Materials, 181, 413–418. https://doi.org/10.1016/j.jhazmat.2010.05.026
Tao, S., Zhang, Y., Yuan, C., Gao, J., Wu, F., & Wang, Z. (2016). Oxidative stress and immunotoxic effects of bisphenol A on the larvae of rare minnow Gobiocypris rarus. Ecotoxicology and Environmental Safety, 124, 377–385. https://doi.org/10.1016/j.ecoenv.2015.11.014
Thaveemas, P., Chuenchom, L., Kaowphong, S., Techasakul, S., Saparpakorn, P., & Dechtrirat, D. (2021). Magnetic carbon nanofiber composite adsorbent through green in-situ conversion of bacterial cellulose for highly efficient removal of bisphenol A. Bioresource Technology, 333, 125184.
Tian, K., Yu, Y., Qiu, Q., Sun, X., Meng, F., Bi, Y., Gu, J., Wang, Y., Zhang, F., & Huo, H. (2023). Mechanisms of BPA degradation and toxicity resistance in Rhodococcus equi. Microorganisms. https://doi.org/10.3390/microorganisms11010067
Tian, Y., Zhou, X., Miao, M., Li, D., Wang, Z., Li, R., Liang, H., & Yuan, W. (2018). Association of bisphenol-A exposure with LINE-1 hydroxymethylation in human semen. International Journal of Environmental Research and Public Health, 15, 1770. https://doi.org/10.3390/ijerph15081770
Torres-García, J., Ahuactzin-Pérez, M., Fernández, F., & Cortés-Espinosa, D. V. (2022). Bisphenol A in the environment and recent advances in biodegradation by fungi. Chemosphere, 303, 134940. https://doi.org/10.1016/j.chemosphere.2022.134940
Toyama, T., Sato, Y., Inoue, D., Sei, K., Chang, Y. C., Kikuchi, S., & Ike, M. (2009). Biodegradation of bisphenol A and bisphenol F in the rhizosphere sediment of Phragmites australis. Journal of Bioscience and Bioengineering, 108, 147–150. https://doi.org/10.1016/j.jbiosc.2009.03.011
Trivedi, M., Patel, C. N., Vaidya, D., Raval, N. P., & Kumar, M. (2023). Exploration of the ameliorative effect of dietary polyphenol on bisphenol-A prompted DNA damage by in vitro and in silico approaches. Journal of Molecular Structure, 1287, 135711. https://doi.org/10.1016/j.molstruc.2023.135711
Urbatzka, R., van Cauwenberge, A., Lutz, I., & Kloas, W. (2007). Androgenic and antiandrogenic activities in water and sediment samples from the river Lambro, Italy, detected by yeast androgen screen and chemical analyses. Chemosphere, 67, 1080–1087. https://doi.org/10.1016/j.Chemosphere.2006.11.041
US EPA. (2023). Bisphenol A (BPA) Summary, https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/bisphenol-bpa-summary. Accessed 17/10/2023
Vahedi, M., Saeedi, A., Poorbaghi, S. L., Sepehrimanesh, M., & Fattahi, M. (2016). Metabolic and endocrine effects of bisphenol A exposure in market seller women with polycystic ovary syndrome. Environmental Science and Pollution Research, 23, 23546–23550. https://doi.org/10.1007/s11356-016-7573-5
Valentino, R., D’Esposito, V., Ariemma, F., Cimmino, I., Beguinot, F., & Formisano, P. (2016). Bisphenol A environmental exposure and the detrimental effects on human metabolic health: is it necessary to revise the risk assessment in vulnerable population? Journal of Endocrinological Investigation, 39, 259–263. https://doi.org/10.1007/s40618-015-0336-1
Vázquez-Tapia, I., Salazar-Martínez, T., Acosta-Castro, M., Capparelli, M. V., & Mora, A. (2022). Occurrence of emerging organic contaminants and endocrine disruptors in different water compartments in Mexico – A review. Chemosphere, 136285. https://doi.org/10.1016/j.Chemosphere.2022.136285
Verdú, I., Trigo, D., Martínez-Guitarte, J. L., & Novo, M. (2018). Bisphenol A in artificial soil: Effects on growth, reproduction, and immunity in earthworms. Chemosphere, 190, 287–295. https://doi.org/10.1016/j.Chemosphere.2017.09.122
Verma, G., Khan, M. F., Akhtar, W., Alam, M. M., Akhter, M., & Shaquiquzzaman, M. (2018). Molecular interactions of bisphenols and analogs with glucocorticoid biosynthetic pathway enzymes: An in-silico approach. Toxicology Mechanisms and Methods, 28, 45–54. https://doi.org/10.1080/15376516.2017.1356415
Veyrenc, S., Regnault, C., Sroda, S., Raveton, M., & Reynaud, S. (2022). An amphibian high fat diet model confirms that endocrine disruptors can induce a metabolic syndrome in wild green frogs (Pelophylax spp. complex). Environmental Pollution, 120009. https://doi.org/10.1016/j.envpol.2022.120009
Villegas, L. G. C., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K. E., & Biswas, N. (2016). A short review of techniques for phenol removal from wastewater. Current Pollution Reports, 2, 157–167. https://doi.org/10.1007/s40726-016-0035-3
Vitku, J., Heracek, J., Sosvorova, L., & Starka, L. (2016). Associations of bisphenol A and polychlorinated biphenyls with spermatogenesis and steroidogenesis in two biological fluids from men attending an infertility clinic. Environment International, 90, 166–173. https://doi.org/10.1016/j.envint.2016.01.021
Von Krogh, K., Ropstad, E., Nourizadeh-Lillabadi, R., Haug, T. M., & Weltzien, F. A. (2019). In-Vitro effects of bisphenol a and tetrabromobisphenol a on cell viability and reproduction-related gene expression in pituitaries from sexually maturing atlantic cod (gadus morhua l.). Fishes, 4, 48. https://doi.org/10.3390/fishes4030048
Vought, V., & Wang, H. S. (2018). Impact of common environmental chemicals bisphenol A and bisphenol S on the physiology of Lumbriculus variegatus. Environmental Toxicology and Pharmacology, 60, 225–229. https://doi.org/10.1016/j.etap.2018.05.003
Wang, B., Lu, L., Zhang, Y., Fang, K., An, D., & Li, H. (2021). Removal of bisphenol A by waste zero-valent iron regulating microbial community in sequencing batch biofilm reactor. Science of the Total Environment, 753, 142073. https://doi.org/10.1016/j.scitotenv.2020.142073
Wang, C., He, J., Xu, T., & Fan, R. (2021). Bisphenol A(BPA), BPS and BPB-induced oxidative stress and apoptosis mediated by mitochondria in human neuroblastoma cell lines. Ecotoxicology and Environmental Safety, 207, 111299. https://doi.org/10.1016/j.ecoenv.2020.111299
Wang, C., He, J., Xu, T., Han, H., Zhu, Z., Meng, L., Pang, Q., & Fan, R. (2021). Bisphenol A(BPA), BPS and BPB-induced oxidative stress and apoptosis mediated by mitochondria in human neuroblastoma cell lines. Ecotoxicology and Environmental Safety, 207, 111299. https://doi.org/10.1016/j.ecoenv.2020.111299
Wang, F., Zhang, Y., Zhang, S., Han, X., Wei, Y., Guo, H., Zhang, X., Yang, H., Wu, T., & He, M. (2022). Combined effects of bisphenol A and diabetes genetic risk score on incident type 2 diabetes: A nested case-control study. Environmental Pollution, 307, 119581. https://doi.org/10.1016/j.envpol.2022.119581
Wang, J., & Chen, H. (2020). Catalytic ozonation for water and wastewater treatment: Recent advances and perspective. Science of the Total Environment, 704, 135249. https://doi.org/10.1016/j.scitotenv.2019.135249
Wang, K., Huang, C., Tang, J., Liu, S., Miao, Y., Liu, Y., & Wu, C. (2023). Bisphenol A affects soybean growth by inhibiting root nodules and germination. Water, Air, & Soil Pollution, 234(2). https://doi.org/10.1007/s11270-023-06097-y
Wang, L., Chen, X., Wang, H., Xu, Y., & Zhuang, Y. (2017). The growth behavior of Chlorella vulgaris in bisphenol A under different cultural conditions. Journal of Environmental & Analytical Toxicology, 07. https://doi.org/10.4172/2161-0525.1000529
Wang, Q., Yang, H., Yang, M., Yu, Y., Yan, M., Zhou, L., Liu, X., Xiao, S., Yang, Y., Wang, Y., Zheng, L., Zhao, H., & Li, Y. (2019). Toxic effects of bisphenol A on goldfish gonad development and the possible pathway of BPA disturbance in female and male fish reproduction. Chemosphere, 221, 235–245. https://doi.org/10.1016/j.Chemosphere.2019.01.033
Wang, R., Diao, P., Chen, Q., Wu, H., Xu, N., & Duan, S. (2018). Identification of novel pathways for biodegradation of bisphenol A by the green alga Desmodesmus sp.WR1, combined with mechanistic analysis at the transcriptome level. The Chemical Engineering Journal, 321, 424–431. https://doi.org/10.1016/j.cej.2017.03.12
Wang, T., Li, M., Chen, B., Xu, M., Xu, Y., Huang, Y., Lu, J., Chen, Y., Wang, W., Li, X., Liu, Y., Bi, Y., Lai, S., & Ning, G. (2012). Urinary bisphenol A (BPA) concentration associates with obesity and insulin resistance. Journal of Clinical Endocrinology & Metabolism, 97, E223–E227. https://doi.org/10.1210/jc.2011-1989
Wang, W., Abualnaja, K. O., Asimakopoulos, A. G., Covaci, A., Gevao, B., Johnson-Restrepo, B., Kumosani, T. A., Malarvannan, G., Minh, T. B., Moon, H. B., & Nakata, H. (2015). A comparative assessment of human exposure to tetrabromobisphenol A and eight bisphenols including bisphenol A via indoor dust ingestion in twelve countries. Environment International, 83, 183–191. https://doi.org/10.1016/j.envint.2015.06.015
Wang, Y., & Wang, H. S. (2021). Bisphenol A affects the pulse rate of Lumbriculus variegatus via an estrogenic mechanism. Comparative Biochemistry and Physiology C, 248, 109105. https://doi.org/10.1016/j.cbpc.2021.109105
Wang, Y., Yu, L., Wang, R., & Zhang, X. (2020). Highly effective microwave-induced catalytic degradation of bisphenol A in aqueous solution using double-perovskite intercalated montmorillonite nanocomposite. Chemical Engineering Journal, 390, 124550.
Wang, Z., Qiu, T., Guo, L., Ye, J., He, L., & Li, X. (2017). The synthesis of hydrophilic molecularly imprinted polymer microspheres and their application for selective removal of bisphenol A from water. Reactive and Functional Polymers, 116, 69–76.
Watkins, D. J., Sánchez, B. N., Téllez-Rojo, M. M., Lee, J. M., Mercado-García, A., Blank-Goldenberg, C., Peterson, K. E., & Meeker, J. D. (2017). Phthalate and bisphenol A exposure during in utero windows of susceptibility in relation to reproductive hormones and pubertal development in girls. Environmental Research, 159, 143–151. https://doi.org/10.1016/j.envres.2017.07.051
Welch, C., & Mulligan, K. (2022). Does bisphenol A confer risk of neurodevelopmental disorders? What we have learned from developmental neurotoxicity studies in animal models. International Journal of Molecular Sciences, 23, 2894. https://doi.org/10.3390/ijms23052894
Wiegel, S., Aulinger, A., Brockmeyer, R., Harms, H., Löffler, J., Reincke, H., Schmidt, R., Stachel, B., von Tümpling, W., & Wanke, A. (2004). Pharmaceuticals in the river Elbe and its tributaries. Chemosphere, 57, 107–126. https://doi.org/10.1016/j.Chemosphere.2004.05.017
Wisniewski, P., Romano, R. M., Kizys, M. M., Oliveira, K., Kasamatsu, T., Giannocco, G., Chiamolera, M. I., Dias-da-Silva, M. R., & Romano, M. A. (2015). Adult exposure to bisphenol A (BPA) in Wistar rats reduces sperm quality with disruption of the hypothalamic–pituitary–testicular axis. Toxicology, 329, 1–9. https://doi.org/10.1016/j.tox.2015.01.002
Wu, Y., Liu, Y., Kamyab, H., Rajasimman, M., Rajamohan, N., Ngo, G. H., & Xia, C. (2023). Physico-chemical and biological remediation techniques for the elimination of endocrine-disrupting hazardous chemicals. Environmental Research, 232, 116363. https://doi.org/10.1016/j.envres.2023.116363
Xi, W., Lee, C. K. F., Yeung, W. S. B., Giesy, J. P., Wong, M. H., Zhang, X., Hecker, M., & Wong, C. K. C. (2011). Effect of perinatal and postnatal bisphenol A exposure to the regulatory circuits at the hypothalamus–pituitary–gonadal axis of CD-1 mice. Reproductive Toxicology, 31, 409–417. https://doi.org/10.1016/j.reprotox.2010.12.002
Xiao, F., Xiao, P., Jiang, W., & Wang, D. (2020). Immobilization of horseradish peroxidase on Fe3O4 nanoparticles for enzymatic removal of endocrine disrupting chemicals. Environmental Science and Pollution Research, 27(19), 24357–24368.
Xiao, X., Zhang, X., Zhang, C., Li, J., Zhao, Y., Zhu, Y., Zhang, J., & Zhou, X. (2019). Toxicity and multigenerational effects of bisphenol S exposure to Caenorhabditis elegans on developmental, biochemical, reproductive, and oxidative stress. Toxicological Research, 8, 630–640. https://doi.org/10.1039/c9tx00055k
Xie, J., Zhao, N., Zhang, Y., Hu, H., Zhao, M., & Jin, H. (2022). Occurrence and partitioning of bisphenol analogues, triclocarban, and triclosan in seawater and sediment from East China Sea. Chemosphere, 287, 132218. https://doi.org/10.1016/j.chemosphere.2021.132218
Xu, J. Y., Wu, L., Shi, Z., Zhang, X. J., Englert, N. A., & Zhang, S. Y. (2016). Upregulation of humanCYP2C9expression by bisphenol A via estrogen receptor alpha (ERα) and Med25. Environmental Toxicology, 32(3), 970–978. https://doi.org/10.1002/tox.22297
Xu, S., Zhang, H., He, P., & Shao, L. (2011). Leaching behaviour of bisphenol, A from municipal solid waste under landfill environment. Environmental Technology, 32, 1269–1277. https://doi.org/10.1080/09593330.2010.535175
Xu, Y., Hu, A., Li, Y., He, Y., Xu, J., & Lu, Z. (2021). Determination and occurrence of bisphenol A and thirteen structural analogs in soil. Chemosphere, 277, 130232. https://doi.org/10.1016/j.chemosphere.2021.130232
Xue, S., Liu, L., Dong, M., Xue, W., Zhou, S., Li, X., Guo, S., & Yan, W. (2023). Prenatal exposure to bisphenol AF induced male offspring reproductive dysfunction by triggering testicular innate and adaptive immune responses. Ecotoxicology and Environmental Safety, 259, 115030. https://doi.org/10.1016/j.ecoenv.2023.115030
Yamada, K., Ikeda, N., Takano, Y., Kashiwada, A., Matsuda, K., & Hirata, M. (2010). Determination of optimum process parameters for peroxidase-catalysed treatment of bisphenol A and application to the removal of bisphenol derivatives. Environmental Technology, 31, 243–256. https://doi.org/10.1080/09593330903453228
Yamanaka, H., Moriyoshi, K., Ohmoto, T., Ohe, T., & Sakai, K. (2007). Degradation of bisphenol A by Bacillus pumilus isolated from kimchi, a traditionally fermented food. Applied Biochemistry and Biotechnology, 136, 39–51. https://doi.org/10.1007/BF02685937
Yamazaki, E., Yamashita, N., Taniyasu, S., Lam, J., Lam, P. K., Moon, H. B., Jeong, Y., Kannan, P., Achyuthan, H., & Munuswamy, N. (2015). Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India. Ecotoxicology and. Environmental Safety, 122, 565–572.
Yan, Z., Liu, Y., Yan, K., Wu, S., Han, Z., Guo, R., Chen, M., Yang, Q., Zhang, S., & Chen, J. (2017). Bisphenol analogues in surface water and sediment from the shallow Chinese freshwater lakes: Occurrence, distribution, source apportionment, and ecological and human health risk. Chemosphere, 184, 318–328. https://doi.org/10.1016/j.Chemosphere.2017.06.010
Yang, T., Fan, S., Li, Y., & Zhou, Q. (2021). Fe-N/C single-atom catalysts with high density of Fe-Nx sites toward peroxymonosulfate activation for high-efficient oxidation of bisphenol A: Electron-transfer mechanism. Chemical Engineering Journal, 419, 129590. https://doi.org/10.1016/j.cej.2021.129590
Yang, X., Zhang, Y., Lai, J., Luo, X., Han, M., Zhao, S., & Zhu, Y. (2021). Analysis of the biodegradation and phytotoxicity mechanism of TNT, RDX, HMX in alfalfa (Medicago sativa). Chemosphere, 281, 130842. https://doi.org/10.1016/j.Chemosphere.2021.130842
Ye, J., Li, C., Wang, L., Yan, Y., Wang, Y., & Dai, J. (2021). MOFs derived 3D sea urchin-like carbon frameworks loaded on PVDF membranes as PMS activator for highly efficient bisphenol A degradation. Separation and Purification Technology, 258, 117669. https://doi.org/10.1016/j.seppur.2020.117669
Ye, Y., Zhou, Q., Feng, L., Wu, J., Xiong, Y., & Li, X. (2017). Maternal serum bisphenol A levels and risk of pre-eclampsia: A nested case–control study. The European Journal of Public Health, 27, 1102–1107. https://doi.org/10.1093/eurpub/ckx148
You, J., Zhang, C., Wu, Z., Ao, Z., Sun, W., Xiong, Z., Su, S., Yao, G., & Lai, B. (2021). N-doped graphite encapsulated metal nanoparticles catalyst for removal OF Bisphenol A via activation of peroxymonosulfate: A singlet oxygen-dominated oxidation process. Chemical Engineering Journal, 415, 128890. https://doi.org/10.1016/j.cej.2021.128890
Youssef, M., El-Din, E., AbuShady, M., El-Baroudy, N., Abd el Hamid, T., Armaneus, A., El Refay, A., Hussein, J., Medhat, D., & Latif, Y. (2018). Urinary bisphenol A concentrations in relation to asthma in a sample of Egyptian children. Human and Experimental Toxicology, 37, 1180–1186. https://doi.org/10.1177/0960327118758150
Yu, F., Jin, F., Cong, Y., Lou, Y., Li, Z., Li, R., Ding, B., Wang, Y., Chen, J., & Wang, J. (2023). Bisphenol A decreases the developmental toxicity and histopathological alterations caused by polystyrene nanoplastics in developing marine medaka Oryzias melastigma. Chemosphere, 336, 139174. https://doi.org/10.1016/j.chemosphere.2023.139174
Yu, P., Liu, Y., Zhang, X., Zhou, J., Xiong, E., Li, X., & Chen, J. (2016). A novel electrochemical aptasensor for bisphenol A assay based on triple-signaling strategy. Biosensors & Bioelectronics, 79, 22–28. https://doi.org/10.1016/j.bios.2015.12.007
Yuan, J., Kong, Y., Ommati, M. M., Tang, Z., Li, H., Li, L., Zhao, C., Shi, Z., & Wang, J. (2019). Bisphenol A-induced apoptosis, oxidative stress, and DNA damage in cultured rhesus monkey embryo renal epithelial Marc-145 cells. Chemosphere, 234, 682–689. https://doi.org/10.1016/j.Chemosphere.2019.06.125
Yuan, M., Chen, S., Zeng, C., Fan, Y., Ge, W., & Chen, W. (2023). Estrogenic and non-estrogenic effects of bisphenol A and its action mechanism in the zebrafish model: An overview of the past two decades of work. Environment International, 176, 107976. https://doi.org/10.1016/j.envint.2023.107976
Zahari, A. M., Shuo, C. W., Sathishkumar, P., Yusoff, A. R. M., Gu, F. L., Buang, N. A., Lau, W. J., Gohari, R., & Yusop, Z. (2018). A reusable electrospun PVDF-PVP-MnO2 nanocomposite membrane for bisphenol A removal from drinking water. Journal of Environmental Chemical Engineering, 6(5), 5801–5811. https://doi.org/10.1016/j.jece.2018.08.073
Zainuddin, A. H., Roslan, M. Q. J., Razak, M. R., Yusoff, F. M., Haron, D. E. M., & Aris, A. Z. (2023). Occurrence, distribution, and ecological risk of bisphenol analogues in marine ecosystem of urbanized coast and estuary. Marine Pollution Bulletin, 192, 115019. https://doi.org/10.1016/j.marpolbul.2023.115019
Zare, E. N., Mudhoo, A., Khan, M. A., Otero, M., Bundhoo, Z. M. A., Navarathna, C., Patel, M., Srivastava, A., Pittman, C. U., Mlsna, T., Mohan, D., Makvandi, P., & Sillanpää, M. (2021). Water decontamination using bio-based, chemically functionalized, doped, and ionic liquid-enhanced adsorbents: Review. Environmental Chemistry Letters, 19(4), 3075–3114. https://doi.org/10.1007/s10311-021-01207-w
Zeng, J., Kuang, H., Hu, C., Shi, X., Yan, M., Xu, L., Wang, L., Xu, C., & Xu, G. (2013). Effect of bisphenol A on rat metabolic profiling studied by using capillary electrophoresis time-of-flight mass spectrometry. Environmental Science and Technology, 47, 7457–7465. https://doi.org/10.1021/es400490f
Zhang, A., Wang, J., & Li, Y. (2015). Performance of calcium peroxide for removal of endocrine-disrupting compounds in waste activated sludge and promotion of sludge solubilization. Water Research, 71, 125–139. https://doi.org/10.1016/j.watres.2015.01.005
Zhang, C., Fei, W., Wang, H., Li, N., Chen, D., Xu, Q., Li, H., He, J., & Lu, J. (2020). p-n Heterojunction of BiOI/ZnO nanorod arrays for piezo-photocatalytic degradation of bisphenol A in water. Journal of Hazardous Materials, 399, 123109.
Zhang, C., Lu, J., Wu, J., & Luo, Y. (2019). Phycoremediation of coastal waters contaminated with bisphenol A by green tidal algae Ulva prolifera. Science of the Total Environment, 661, 55–62. https://doi.org/10.1016/j.scitotenv.2019.01.132
Zhang, H., Zhang, Y., Li, J., & Yang, M. (2019). Occurrence and exposure assessment of bisphenol analogues in source water and drinking water in China. Science of the Total Environment, 655, 607–613. https://doi.org/10.1016/j.scitotenv.2018.11.053
Zhang, W., Xiong, B., Sun, W. F., An, S., Lin, K. F., Guo, M. J., & Cui, X. H. (2014). Acute and chronic toxic effects of bisphenol A on Chlorella pyrenoidosa and Scenedesmus obliquus: Acute and chronic toxic effects of bisphenol a on two algae. Environmental Toxicology, 29, 714–722. https://doi.org/10.1002/tox.21806
Zhang, Y., Cao, J., Ke, T., Tao, Y., Wu, W., Wang, P., Zhou, M., & Chen, L. (2022). Pollution characteristics and risk prediction of endocrine disruptors in Lakes of Wuhan. Toxics, 10, 93. https://doi.org/10.3390/toxics10020093
Zhang, Z., Alomirah, H., Cho, H. S., Li, Y. F., Liao, C., Minh, T. B., Mohd, M. A., Nakata, H., Ren, N., & Kannan, K. (2011). Urinary bisphenol A concentrations and their implications for human exposure in several Asian countries. Environmental Science and Technology, 45, 7044–7050. https://doi.org/10.1021/es200976k
Zhao, F., Liu, Y., Hammouda, S. B., Doshi, B., Guijarro, N., Min, X., Tang, C. J., Sillanpää, M., Sivula, K., & Wang, S. (2020). MIL-101(Fe)/g-C3N4 for enhanced visible-light-driven photocatalysis toward simultaneous reduction of Cr (VI) and oxidation of bisphenol A in aqueous media. Applied Catalysis B: Environmental, 272, 119033. https://doi.org/10.1016/j.apcatb.2020.119033
Zhao, J., Chen, X., Lin, F., Yang, N., Huang, H., & Zhao, J. (2014). Mechanism of toxicity formation and spatial distribution in activated sludge treating synthetic effluent containing bisphenol A (BPA). The Chemical Engineering Journal, 250, 91–98. https://doi.org/10.1016/j.cej.2014.03.025
Zhao, L., Zhang, X., Liu, Z., Deng, C., Xu, H., Wang, Y., & Zhu, M. (2021). Carbon nanotube-based electrocatalytic filtration membrane for continuous degradation of flow-through bisphenol A. Separation and Purification Technology, 265, 118503. https://doi.org/10.1016/j.seppur.2021.118503
Zhou, L., Richard, C., Ferronato, C., Chovelon, J. M., & Sleiman, M. (2018). Investigating the performance of biomass-derived biochars for the removal of gaseous ozone, adsorbed nitrate and aqueous bisphenol A. Chemical Engineering Journal, 334, 2098–2104. https://doi.org/10.1016/j.cej.2017.11.145
Zhou, Z., Zhang, J., Jiang, F., Xie, Y., Zhang, X., & Jiang, L. (2017). Higher urinary bisphenol A concentration and excessive iodine intake are associated with nodular goiter and papillary thyroid carcinoma. Bioscience Reports, 37, BSR20170678. https://doi.org/10.1042/BSR20170678
Zhu, M., Li, Y., Niu, Y., Li, J., & Qin, Z. (2020). Effects of bisphenol A and its alternative bisphenol F on Notch signaling and intestinal development: A novel signaling by which bisphenols disrupt vertebrate development. Environmental Pollution, 263, 114443. https://doi.org/10.1016/j.envpol.2020.114443
Zielińska, M., Bułkowska, K., Cydzik-Kwiatkowska, A., Bernat, K., & Wojnowska-Baryła, I. (2016). Removal of bisphenol A (BPA) from biologically treated wastewater by microfiltration and nanofiltration. International Journal of Environmental Science and Technology, 13, 2239–2248. https://doi.org/10.1007/s13762-016-1056-6
Zoeller, R. T., Bergman, K., Becher, G., Bjerregaard, P., Bornman, R., Brandt, I., Iguchi, T., Jobling, S., Kidd, K. A., Kortenkamp, A., Skakkebaek, N. E., Toppari, J., & Vandenberg, L. N. (2014). A path forward in the debate over health impacts of endocrine disrupting chemicals. Environmental Health, 13(1). https://doi.org/10.1186/1476-069x-13-118
Zühlke, M. K., Schlüter, R., Mikolasch, A., Henning, A. K., Giersberg, M., Lalk, M., Kunze, G., Schweder, T., Urich, T., & Schauer, F. (2020). Biotransformation of bisphenol A analogues by the biphenyl-degrading bacterium Cupriavidus basilensis - A structure-biotransformation relationship. Applied Microbiology and Biotechnology, 104, 3569–3583. https://doi.org/10.1007/s00253-020-10406-4
Acknowledgements
The authors gratefully acknowledge the facilities provided by the Vice-chancellor of Gautam Buddha University, Greater Noida, Uttar Pradesh, India.
Author information
Authors and Affiliations
Contributions
The first author, Anuradha Mishra, helped in drafting the manuscript and prepared the figures. The corresponding author, Shiv Shankar, formulated and designed the study. The co-author, Divya Goel, helped in editing of the manuscript.
Corresponding author
Ethics declarations
All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Mishra, A., Goel, D. & Shankar, S. Bisphenol A contamination in aquatic environments: a review of sources, environmental concerns, and microbial remediation. Environ Monit Assess 195, 1352 (2023). https://doi.org/10.1007/s10661-023-11977-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10661-023-11977-1