Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Online sellers’ financing strategies in an e-commerce supply chain: bank credit vs. e-commerce platform financing

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

We study a supply chain with two competitive online sellers, in which the seller who suffers from capital distress may borrow from a commercial bank or an e-commerce platform. We consider three different supply chain models depending on how many sellers suffer from capital distress. We characterize the sellers’ optimal production decisions and the lenders’ optimal interest rates, and further examine the sellers’ financing preferences. We demonstrate that the e-commerce platform will charge a zero interest rate to the financially constrained seller if the production cost is beyond a certain threshold. It is observed that the financially constrained seller’s financing preference is correlated with the capital status and financing choice of its rival. Specifically, if only one of the sellers is financially constrained, it is always optimal for the capital-constrained seller to borrow from the e-commerce platform. In contrast, if both sellers suffer from capital distress, the two sellers prefer e-commerce platform financing when the e-commerce platform’s commission rate is relatively high or when the commission ratio is low while the production cost is high. Furthermore, it is more profitable for the bank or e-commerce platform to provide financing service to both capital-constrained sellers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang, S., & Birge, J. (2018). Trade credit, risk sharing, and inventory financing portfolios. Management Science, 64(8), 3667–3689.

    Article  Google Scholar 

  2. Yan, N., He, X., & Liu, Y. (2019). Financing the capital-constrained supply chain with loss aversion: Supplier finance vs. supplier investment. Omega, 88, 162–178.

    Article  Google Scholar 

  3. Gupta, D., & Chen, Y. (2020). Retailer-direct financing contracts under consignment. Manufacturing and Service Operations Management, 22(3), 528–544.

    Article  Google Scholar 

  4. Cai, G., Chen, X., & Xiao, Z. (2014). The roles of bank and trade credits: Theoretical analysis and empirical evidence. Production and Operations Management, 23(4), 583–598.

    Article  Google Scholar 

  5. Kouvelis, P., & Zhao, W. (2018). Who should finance the supply chain? Impact of credit ratings on supply chain decisions. Manufacturing and Service Operations Management, 20(1), 19–35.

    Article  Google Scholar 

  6. Chen, X. (2015). A model of trade credit in a capital-constrained distribution channel. International Journal of Production Economics, 159, 347–357.

    Article  Google Scholar 

  7. Gupta, D., & Wang, L. (2009). A stochastic inventory model with trade credit. Manufacturing and Service Operations Management, 11(1), 4–18.

    Article  Google Scholar 

  8. Lee, C., & Rhee, B. (2011). Trade credit for supply chain coordination. European Journal of Operational Research, 214(1), 136–146.

    Article  Google Scholar 

  9. Taleizadeh, A., Pentico, D., Jabalameli, M., & Aryanezhad, M. (2013). An EOQ model with partial delayed payment and partial backordering. Omega, 41(2), 354–368.

    Article  Google Scholar 

  10. Jin, W., Zhang, Q., & Luo, J. (2019). Non-collaborative and collaborative financing in a bilateral supply chain with capital constraints. Omega, 88, 210–222.

    Article  Google Scholar 

  11. Zhan, J., Chen, X., & Huang, J. (2021). Trade credit financing for two competitive retailers in a capital-constrained supply chain. Asia-Pacific Journal of Operational Research. https://doi.org/10.1142/S0217595920500451

    Article  Google Scholar 

  12. Li, G., Zheng, H., & Liu, M. Q. (2020). Reselling or drop shipping: Strategic analysis of E-commerce dual-channel structures. Electronic Commerce Research, 20, 475–508.

    Article  Google Scholar 

  13. Zhang, J., Xu, N., & Bai, S. Z. (2021). The optimal pricing decisions for e-tailers with different payment schemes. Electronic Commerce Research, 21, 955–982.

    Article  Google Scholar 

  14. Liu, J., Yang, Y., & Yu, Y. G. (2021). Ordering and interest rate strategies in platform finance with an overconfident and commerce retailer. Transportation Research Part E: Logistics and Transportation Review. https://doi.org/10.1016/j.tre.2021.102430

    Article  Google Scholar 

  15. Wang, C., Fan, X., & Yin, Z. (2019). Financing online retailers: bank vs. electronic business platform, equilibrium, and coordinating strategy. European Journal of Operational Research, 276(1), 343–356.

  16. Yang, H., Zhen, Z., Yan, Q., & Wan, H. (2022). Mixed financing scheme in a capital-constrained supply chain: bank credit and e-commerce platform financing. International Transactions in Operational Research, 29(4), 2423–2447.

  17. Chen, Z., & Zhang, R. (2021). A cash-constrained dynamic lot-sizing problem with loss of goodwill and credit-based loan. International Transactions in Operational Research, 28(5), 2841–2866.

    Article  Google Scholar 

  18. Zhou, Y., Cao, B., Zhong, Y., & Wu, Y. (2017). Optimal advertising/ordering policy and finance mode selection for a capital-constrained retailer with stochastic demand. Journal of the Operational Research Society, 68(12), 1620–1632.

    Article  Google Scholar 

  19. Dada, M., & Hu, Q. (2008). Financing the newsvendor inventory. Operations Research Letters, 36(5), 269–273.

    Article  Google Scholar 

  20. Jing, B., Chen, X., & Cai, G. (2012). Equilibrium financing in a distribution channel with capital constraint. Production and Operations Management, 21(6), 1090–1101.

    Article  Google Scholar 

  21. Chen, X., & Wang, A. (2012). Trade credit contract with limited liability in the supply chain with budget constraints. Annals of Operations Research, 196(1), 153–165.

    Article  Google Scholar 

  22. Yan, N., Sun, B., Zhang, H., & Liu, C. (2016). A partial credit guarantee contract in a capital-constrained supply chain: Financing equilibrium and coordinating structure. International Journal of Production Economics, 173, 122–133.

    Article  Google Scholar 

  23. Alan, Y., & Gaur, V. (2018). Operational investment and capital structure under asset-based lending. Manufacturing and Service Operations Management, 20(4), 637–654.

    Article  Google Scholar 

  24. Bi, C., Zhang, B., Yang, F., Wang, Y., & Bi, G. (2022). Selling to the newsvendor through debt-shared bank financing. European Journal of Operational Research, 296(1), 116–130.

    Article  Google Scholar 

  25. Peura, H., Yang, A., & Lai, G. (2017). Trade credit in competition: A horizontal benefit. Manufacturing and Service Operations Management, 19(2), 263–289.

    Article  Google Scholar 

  26. Zhou, Y., Wen, Z., & Wu, X. (2015). A single-period inventory and payment model with partial trade credit. Computers and Industrial Engineering, 90, 132–145.

    Article  Google Scholar 

  27. Chod, J., Lyandres, E., & Yang, S. (2019). Trade credit and supplier competition. Journal of Financial Economics, 131(2), 484–505.

    Article  Google Scholar 

  28. Chen, X., Cai, G., & Song, J. (2019). The cash flow advantages of 3PLs as supply chain orchestrators. Manufacturing and Service Operations Management, 21(2), 435–451.

    Article  Google Scholar 

  29. Gao, D., Zhao, X., & Geng, W. (2014). A delay-in-payment contract for Pareto improvement of a supply chain with stochastic demand. Omega, 49, 60–68.

    Article  Google Scholar 

  30. Zhan, J., Chen, X., & Hu, Q. (2019). The value of trade credit with rebate contract in a capital-constrained supply chain. International Journal of Production Research, 57(2), 379–396.

    Article  Google Scholar 

  31. Phan, D., Vo, T., & Lai, A. (2019). Supply chain coordination under trade credit and retailer effort. International Journal of Production Research, 57(9), 2642–2655.

    Article  Google Scholar 

  32. Huang, S., Fan, Z., & Wang, X. (2019). The impact of transportation fee on the performance of capital-constrained supply chain under 3PL financing service. Computers and Industrial Engineering, 130, 358–369.

    Article  Google Scholar 

  33. Huang, S., Fan, Z., & Wang, X. (2019). Optimal operational strategies of supply chain under financing service by a 3PL firm. International Journal of Production Research, 57(11), 3405–3420.

    Article  Google Scholar 

  34. Dang, X., Bi, G., Liu, C., & Xu, Y. (2021). Optimal financing strategies with 3PL customized service in a capital-constrained supply chain. Electronic Commerce Research and Applications. https://doi.org/10.1016/j.elerap.2021.101090

    Article  Google Scholar 

  35. Zhen, X., Shi, D., Li, Y., & Zhang, C. (2020). Manufacturer’s financing strategy in a dual-channel supply chain: third-party platform, bank and retailer credit financing. Transportation Research Part E: Logistics and Transportation Review. 10. 1016/j.tre.2019.101820.

  36. Yan, N., Liu, Y., Xu, X., & He, X. (2020). Strategic dual-channel pricing games with e-retailer finance. European Journal of Operational Research, 283(1), 138–151.

    Article  Google Scholar 

  37. Yan, N., Zhang, Y., Xun, X., & Gao, Y. (2021). Online finance with dual channels and bidirectional free-riding effect. International Journal of Production Economics. https://doi.org/10.1016/j.ijpe.2020.107834

    Article  Google Scholar 

  38. Yi, Z., Wang, Y., & Chen, Y. (2021). Financing an agricultural supply chain with a capital-constrained smallholder farmer in developing economies. Production and Operations Management, 30(7), 2102–2121.

    Article  Google Scholar 

  39. Fisman, R., & Raturi, M. (2004). Does competition encourage credit provision? evidence from African trade credit relationships. Review of Economics and Statistics, 86(1), 345–352.

    Article  Google Scholar 

  40. Fabbri, D., & Klapper, L. (2016). Bargaining power and trade credit. Journal of Corporate Finance, 41(7), 66–80.

    Article  Google Scholar 

  41. Yang, H., Zhuo, W., & Shao, L. (2017). Equilibrium evolution in a two-echelon supply chain with financially constrained retailers: The impact of equity financing. International Journal of Production Economics, 185, 139–149.

    Article  Google Scholar 

  42. Qin, J., Zhang, A., Xia, L., & Liu, M. (2017). Retailer order-taking strategies under competing trade credit polices with varying demands. Asia-Pacific Journal of Operational Research, 34(1), 1–17.

    Article  Google Scholar 

  43. Deng, S., Fu, K., Xu, J., & Zhu, K. (2019). The supply chain effects of trade credit under uncertain demands. Omega. https://doi.org/10.1016/j.omega.2019.102113

    Article  Google Scholar 

  44. Wu, D., Zhang, B., & Baron, O. (2019). A trade credit model with asymmetric competing retailers. Production and Operations Management, 28(1), 206–231.

    Article  Google Scholar 

  45. Wang, J., Wang, K., Li, X., & Zhao, R. (2022). Suppliers’ trade credit strategies with transparent credit ratings: Null, exclusive, and nonchalant provision. European Journal of Operational Research, 297(1), 153–163.

    Article  Google Scholar 

  46. Kouvelis, P., & Zhao, W. (2012). Financing the newsvendor: supplier vs. bank, optimal rates and alternative schemes. Operations Research, 60(3), 566–580.

  47. Baron, O., Berman, O., & Wu, D. (2016). Bargaining within the supply chain and its implications in an industry. Decision Sciences, 47(2), 193–218.

    Article  Google Scholar 

  48. Qing, Q., Deng, T., & Wang, H. (2017). Capacity allocation under downstream competition and bargaining. European Journal of Operational Research, 261(1), 97–107.

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by the National Natural Science Foundation of China under Grant No. 717901117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Yan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 1

For Problems (1) and (2), we show that \({\pi }_{{S}_{i}}^{NB}({q}_{i}^{NB})\) is concave in \({q}_{i}^{NB}\). According to the first-order condition, the optimal production quantities are \({q}_{1}^{NB*}=\) \(\frac{2a-2c-2ak-a\lambda +\lambda c+ak\lambda +\lambda c{r}_{{b}_{2}}^{NB}}{\left(2-\lambda \right)\left(\lambda +2\right)\left(1-k\right)}\) and \({q}_{2}^{NB*}=\frac{2a-2c-2ak-a\lambda +\lambda c-2c{r}_{{b}_{2}}^{NB}+ak\lambda }{\left(2-\lambda \right)\left(\lambda +2\right)\left(1-k\right)}\). Substituting \({q}_{2}^{NB*}\) into Eq. (3), we show that \({\pi }_{B}^{NB}({r}_{{b}_{2}}^{NB})\) is also a concave function with respect to \({r}_{{b}_{2}}^{NB}\). Therefore, the optimal interest rate is \({r}_{{b}_{2}}^{NB*}=\frac{\left(2-\lambda \right)[a\left(1-k\right)-c]}{4c}>0\). Substituting \({r}_{{b}_{2}}^{NB*}\) into \({q}_{1}^{NB*}\) and \({q}_{2}^{NB*}\), we further obtain \({q}_{1}^{NB*}=\frac{\left(\lambda +4\right)[a\left(1-k\right)-c]}{4\left(1-k\right)\left(\lambda +2\right)}\) and \({q}_{2}^{NB*}=\frac{a\left(1-k\right)-c}{2\left(1-k\right)\left(\lambda +2\right)}\).\(\square\)

Proof of Lemma 2

For Problems (4) and (5), it is straightforward that \({\pi }_{{S}_{i}}^{NE}({q}_{i}^{NE})\) is concave in \({q}_{i}^{NE}\). According to the first-order condition, the optimal production quantities are \({q}_{1}^{NE*}=\frac{2a-2c-2ak-a\lambda +\lambda c+ak\lambda +\lambda c{r}_{{p}_{2}}^{NE}}{\left(2-\lambda \right)\left(\lambda +2\right)\left(1-k\right)}\) and \({q}_{2}^{NE*}=\frac{2a-2c-2ak-a\lambda +\lambda c-2c{r}_{{p}_{2}}^{NE}+ak\lambda }{\left(2-\lambda \right)\left(\lambda +2\right)\left(1-k\right)}\). Substituting \({q}_{1}^{NE*}\) and \({q}_{2}^{NE*}\) into Eq. (6), we have \({r}_{{e}_{2}}^{NE*}=\) \(\frac{{\left(2-\lambda \right)}^{2}(2c-2a+4ak-a\lambda +\lambda c-2a{k}^{2}+ak\lambda +k\lambda c)}{2c\left(4k+k{\lambda }^{2}+2{\lambda }^{2}-8\right)}\) and \(\frac{{\partial }^{2}{\pi }_{E}^{NE}({r}_{{p}_{2}}^{NE})}{\partial {({r}_{{p}_{2}}^{NE})}^{2}}=\frac{2{w}^{2}\left(4k+k{\lambda }^{2}+ 2{\lambda }^{2}-8\right)}{{\left(2-\lambda \right)}^{2}{\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}}<0\). Note that if \(c\ge \frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({r}_{{e}_{2}}^{NE*}\le 0\); if \(c<\frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({r}_{{e}_{2}}^{NE*}>0\). Therefore, if \(c\ge \frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({r}_{{e}_{2}}^{NE*}=0\); if \(c<\frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({r}_{{e}_{2}}^{NE*}=\frac{{\left(2-\lambda \right)}^{2}(2c-2a+4ak-a\lambda +\lambda c-2a{k}^{2}+ak\lambda +k\lambda c)}{2c\left(4k+k{\lambda }^{2}+2{\lambda }^{2}-8\right)}\). Substituting \({r}_{{e}_{2}}^{NE*}\) into \({q}_{1}^{NE*}\) and \({q}_{2}^{NE*}\), we obtain optimal production quantities.\(\square\)

Proof of Proposition 1

  1. (i)

    \(\frac{\partial {r}_{{b}_{2}}^{NB*}}{\partial k}=\frac{a\left(\lambda -2\right)}{4c}<0\), \(\frac{\partial {q}_{1}^{NB*}}{\partial k}=-\frac{c\left(\lambda +4\right)}{4{\left(k-1\right)}^{2}\left(\lambda +2\right)}<0\) and \(\frac{\partial {q}_{2}^{NB*}}{\partial k}=-\frac{c}{2{\left(k-1\right)}^{2}\left(\lambda +2\right)}<0\);

  2. (ii)

    If \(c<\frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \(\frac{\partial {r}_{{e}_{2}}^{NE*}}{\partial k}=-\frac{{\left(\lambda -2\right)}^{2}\left(\begin{array}{c}24a-32ak+4a\lambda +12c\lambda +8a{k}^{2}-10a{\lambda }^{2}\\ -3a{\lambda }^{3}+2c{\lambda }^{2}-c{\lambda }^{3}+2a{k}^{2}{\lambda }^{2}+8ak{\lambda }^{2}+8c\end{array}\right)}{2c{\left(4k+k{\lambda }^{2}+2{\lambda }^{2}-8\right)}^{2}}<0\), \(\frac{\partial {q}_{1}^{NE*}}{\partial k}=-\frac{\begin{array}{c}64c+8a\lambda -64ck-8c\lambda -12a{\lambda }^{2}+2a{\lambda }^{3}+a{\lambda }^{4}+16{ck}^{2}-20c{\lambda }^{2}-2c{\lambda }^{3}+3c{\lambda }^{4} \\ -12{ak}^{2}{\lambda }^{2}+2{ak}^{2}{\lambda }^{3}+{ak}^{2}{\lambda }^{4}+8{ck}^{2}{\lambda }^{2}-2{ck}^{2}{\lambda }^{3}+{ck}^{2}{\lambda }^{4}-16ak\lambda +16ck\lambda \\ +24ak{\lambda }^{2}+8{ak}^{2}\lambda -4ak{\lambda }^{3}-2ak{\lambda }^{4}-8ck{\lambda }^{2}-8{ck}^{2}\lambda +4ck{\lambda }^{3}+2ck{\lambda }^{4}\end{array}}{2{\left(k-1\right)}^{2}{\left(4k+k{\lambda }^{2}+2{\lambda }^{2}-8\right)}^{2}}<0\) and \(\frac{\partial {q}_{2}^{NE*}}{\partial k}=\frac{\begin{array}{c}8a-16ak-12a\lambda +16ck+12c\lambda +8a{k}^{2}+2a{\lambda }^{2}+a{\lambda }^{3}-8c{k}^{2}-2c{\lambda }^{2}-c{\lambda }^{3}+2a{k}^{2}{\lambda }^{2}\\ +a{k}^{2}{\lambda }^{3}-2c{k}^{2}{\lambda }^{2}+24ak\lambda -8ck\lambda -4ak{\lambda }^{2}-12a{k}^{2}\lambda -2ak{\lambda }^{3}+4ck{\lambda }^{2}-2ck{\lambda }^{3}-8c\end{array}}{{\left(k-1\right)}^{2}{\left(4k+k{\lambda }^{2}+2{\lambda }^{2}-8\right)}^{2}}<0.\)

If \(c\ge \frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \(\frac{\partial {r}_{{e}_{2}}^{NE*}}{\partial k}=0\) and \(\frac{\partial {q}_{1}^{NE*}}{\partial k}=\frac{\partial {q}_{2}^{NE*}}{\partial k}=-\frac{c}{{\left(k - 1\right)}^{2}\left(\lambda +2\right)}<0\).\(\square\)

Proof of Proposition 2

First, if \(c\ge \frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({r}_{{b}_{2}}^{NB*}-{r}_{{e}_{2}}^{NE*}=\frac{\left(2-\lambda \right)\left[a\left(1-k\right)-c\right]}{4w}>0\); if \(c<\) \(\frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({r}_{{b}_{2}}^{NB*}-{r}_{{e}_{2}}^{NE*}=-\frac{k\left(2-\lambda \right)\left(4a+4c-4ak-4a\lambda +4\lambda c-a{\lambda }^{2}-{\lambda }^{2}c+4ak\lambda +ak{\lambda }^{2}\right)}{4c\left(4k+k{\lambda }^{2}+2{\lambda }^{2}-8\right)}\) \(>0\). Therefore, \({r}_{{e}_{2}}^{NE*}<{r}_{{b}_{2}}^{NB*}\).

Second, if \(c\ge \frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({q}_{1}^{NB*}-{q}_{1}^{NE*}=\frac{\lambda \left[a\left(1-k\right)-c\right]}{4\left(1-k\right)\left(\lambda +2\right)}>0\); if \(c<\) \(\frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({q}_{1}^{NB*}-{q}_{1}^{NE*}=\frac{k\lambda \left(4a+4c-4ak-4a\lambda +4\lambda c-a{\lambda }^{2}-{\lambda }^{2}c+4ak\lambda +ak{\lambda }^{2}\right)}{4\left(\lambda +2\right)\left(k-1\right)\left(4k+k{\lambda }^{2}+2{\lambda }^{2}-8\right)}>0\). Therefore, \({q}_{1}^{NB*}>{q}_{1}^{NE*}\).

Third, if \(c\ge \frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({q}_{2}^{NB*}-{q}_{2}^{NE*}=-\frac{a\left(1-k\right)-c}{2\left(1-k\right)\left(\lambda +2\right)}<0\); if \(c<\) \(\frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({q}_{2}^{NB*}-{q}_{2}^{NE*}=\frac{k\left(4a+4c-4ak-4a\lambda +4\lambda c-a{\lambda }^{2}-{\lambda }^{2}c+4ak\lambda +ak{\lambda }^{2}\right)}{2\left(\lambda +2\right)\left(1-k\right)\left(4k+k{\lambda }^{2}+2{\lambda }^{2}-8\right)}<0\). Therefore, \({q}_{2}^{NB*}<{q}_{2}^{NE*}\).\(\square\)

Proof of Proposition 3

If \(c\ge \frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({\pi }_{{S}_{2}}^{NE*}-{\pi }_{{S}_{2}}^{NB*}=\frac{3{\left[a\left(1-k\right)-c\right]}^{2}}{{4\left(1-k\right)\left(\lambda +2\right)}^{2}}>0\) and \({\pi }_{{S}_{1}}^{NE*}-{\pi }_{{S}_{1}}^{NB*}=-\frac{\lambda {\left[a\left(1-k\right)-c\right]}^{2}\left(\lambda +8\right)}{{16\left(1-k\right)\left(\lambda +2\right)}^{2}}<0\); if \(c<\frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({\pi }_{{S}_{2}}^{NE*}-{\pi }_{{S}_{2}}^{NB*}>0\) and \({\pi }_{{S}_{1}}^{NE*}-\) \({\pi }_{{S}_{1}}^{NB*}<0\). Therefore, \({\pi }_{{S}_{2}}^{NE*}>{\pi }_{{S}_{2}}^{NB*}\) and \({\pi }_{{S}_{1}}^{NE*}<{\pi }_{{S}_{1}}^{NB*}\).\(\square\)

Proof of Proposition 4

  1. (i)

    (i) \({\pi }_{{S}_{1}}^{NB*}-{\pi }_{{S}_{1}}^{NN*}=\frac{\lambda {\left(c-a+ak\right)}^{2}\left(\lambda +8\right)}{16{\left(\lambda +2\right)}^{2}\left(1-k\right)}>0\) and \({\pi }_{{S}_{2}}^{NB*}-{\pi }_{{S}_{2}}^{NN*}=\) \(\frac{3{\left(c-a+ak\right)}^{2}}{4\left(\mathrm{k}-1\right){\left(\lambda +2\right)}^{2}}<0\).

  2. (ii)

    (ii) If \(c<\frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({\pi }_{{S}_{1}}^{NN*}-{\pi }_{{S}_{1}}^{NE*}=\frac{\lambda \left(2-\lambda \right)\left(\begin{array}{c}2a-2c-4ak+a\lambda -c\lambda \\ +2a{k}^{2}-ak\lambda -ck\lambda \end{array}\right)\left(\begin{array}{c}32a-32c-48ak+4a\lambda +16ck-4c\lambda +16a{k}^{2}\\ -8a{\lambda }^{2}-a{\lambda }^{3}+8c{\lambda }^{2}+c{\lambda }^{3}+2a{k}^{2}{\lambda }^{2}-8ak\lambda +\\ 6ak{\lambda }^{2}+4a{k}^{2}\lambda +ak{\lambda }^{3}+2ck{\lambda }^{2}+ck{\lambda }^{3}\end{array}\right)}{4{\left(\lambda +2\right)}^{2}\left(k-1\right){\left(4k+k{\lambda }^{2}+2{\lambda }^{2}-8\right)}^{2}}<0\); \({\pi }_{{S}_{2}}^{NN*}-{\pi }_{{S}_{2}}^{NE*}=\frac{\left(2-\lambda \right)\left(\begin{array}{c}12a-12c-16ak+8ck+4a{k}^{2}-3a{\lambda }^{2}+3c{\lambda }^{2}+\\ 2a{k}^{2}{\lambda }^{2}-2ak\lambda +2ck\lambda +ak{\lambda }^{2}+2a{k}^{2}\lambda +ck{\lambda }^{2}\end{array}\right)\left(\begin{array}{c}2a-2c-4ak+a\lambda -c\lambda \\ +2a{k}^{2}-ak\lambda -ck\lambda \end{array}\right)}{{\left(\lambda +2\right)}^{2}\left(1-k\right){\left(4k+k{\lambda }^{2}+2{\lambda }^{2}-8\right)}^{2}}>0\);

If \(c\ge \frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({\pi }_{{S}_{1}}^{NN*}-{\pi }_{{S}_{1}}^{NE*}={\pi }_{{S}_{2}}^{NN*}-{\pi }_{{S}_{2}}^{NE*}=0\);

Therefore, we have \({\pi }_{{S}_{1}}^{NE*}\ge {\pi }_{{S}_{1}}^{NN*}\) and \({\pi }_{{S}_{2}}^{NE*}\le {\pi }_{{S}_{2}}^{NN*}\). \(\square\)

Proof of Proposition 5

  1. (1)

    First, \({\pi }_{B}^{NB*}=\frac{\left(2-\lambda \right){\left(c-a+ak\right)}^{2}}{8\left(1-k\right)\left(\lambda +2\right)}>{\pi }_{B}^{NE*}=0\).

    Second, if \(c<\frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda \left(1+k\right)+2}\), then \({\pi }_{E}^{NE*}-{\pi }_{E}^{NB*}=\frac{{G}_{1}}{16{\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}\left(4k+k{\lambda }^{2}+2{\lambda }^{2}-8\right)}\) and \({G}_{1}={a}^{2}{k}^{4}{\lambda }^{4}-8{a}^{2}{k}^{4}{\lambda }^{3}-8{a}^{2}{k}^{4}{\lambda }^{2}+32{a}^{2}{k}^{4}\lambda -48{a}^{2}{k}^{4}+16{a}^{2}{k}^{3}{\lambda }^{3}-64{c}^{2}\)

    $$-16{a}^{2}{k}^{3}{\lambda }^{2}-64{a}^{2}{k}^{3}\lambda +192{a}^{2}{k}^{3}-7{a}^{2}{k}^{2}{\lambda }^{4}-8{a}^{2}{k}^{2}{\lambda }^{3}+88{a}^{2}{k}^{2}{\lambda }^{2}-4{a}^{2}{\lambda }^{4}+32{a}^{2}{k}^{2}\lambda -304{a}^{2}{k}^{2}+10{a}^{2}k{\lambda }^{4}-96{a}^{2}k{\lambda }^{2}+224{a}^{2}k+32{a}^{2}{\lambda }^{2}-64{a}^{2}-4{c}^{2}{\lambda }^{4}$$
    $$+6ac{k}^{3}{\lambda }^{4}-48ac{k}^{3}{\lambda }^{2}-32ac{k}^{3}-2ac{k}^{2}{\lambda }^{4}-16ac{k}^{2}{\lambda }^{2}+224ac{k}^{2}+{c}^{2}{k}^{2}{\lambda }^{4}-12ack{\lambda }^{4}+128ack{\lambda }^{2}-320ack+8ac{\lambda }^{4}-64ac{\lambda }^{2}+128ac+8{c}^{2}{k}^{2}{\lambda }^{3}+32{c}^{2}{\lambda }^{2}$$

    \(-8{c}^{2}{k}^{2}{\lambda }^{2}-32{c}^{2}{k}^{2}\lambda -48{c}^{2}{k}^{2}+2{c}^{2}k{\lambda }^{4}-32{c}^{2}k{\lambda }^{2}+96{c}^{2}k<0\), which implies \({\pi }_{E}^{NE*}>{\pi }_{E}^{NB*}\). If \(c\ge \frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda \left(1+k\right)+2}\), then \({\pi }_{E}^{NE*}-{\pi }_{E}^{NB*}=\frac{k\left(c-a+ak\right)\left(\begin{array}{c}4ak-4a+8a\lambda -8c\lambda -a{\lambda }^{2}\\ +5c{\lambda }^{2}-8ak\lambda +ak{\lambda }^{2}-12c\end{array}\right)}{16{\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}}\) \(>0\). Therefore, \({\pi }_{E}^{NE*}>{\pi }_{E}^{NB*}\).

  2. (2)

    First, \({\pi }_{B}^{NB*}=\frac{\left(2-\lambda \right){\left(c-a+ak\right)}^{2}}{8\left(1-k\right)\left(\lambda +2\right)}>{\pi }_{B}^{NN*}=0\).

    Second, if \(c<\frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({\pi }_{E}^{NE*}-{\pi }_{E}^{NN*}=-\frac{{\left(\lambda -2\right)}^{2}{\left(\begin{array}{c}2a-2c-4ak+a\lambda -c\lambda \\ +2a{k}^{2}-ak\lambda -ck\lambda \end{array}\right)}^{2}}{4{\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}\left(4k+k{\lambda }^{2}+2{\lambda }^{2}-8\right)}\) \(>0\); if \(c\ge \frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({\pi }_{E}^{NE*}={\pi }_{E}^{NN*}\). Therefore, \({\pi }_{E}^{NE*}\ge {\pi }_{E}^{NN*}\).

  3. (3)

    \({\pi }_{E}^{NB*}-{\pi }_{E}^{NN*}=\frac{k\left(a-ak-c\right){G}_{2}}{16{\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}}\), where \({G}_{2}=4ak-12c-4a+8a\lambda -8c\lambda -a{\lambda }^{2}+5c{\lambda }^{2}-8ak\lambda +ak{\lambda }^{2}\). We show that \({G}_{2}\) decreases with \(c\) and \({G}_{2}{|}_{c=(1-k)a}\) \(<0\). Since \({G}_{2}{|}_{c=0}=a\left({\lambda }^{2}-8\lambda +4\right)\left(k-1\right)\), then \({G}_{2}{|}_{c=0}>0\) if \(\lambda >0.5359\), and \({G}_{2}{|}_{c=0}<0\) if \(\lambda <0.5359\). Therefore, when \(\lambda <0.5359\), we have \({G}_{2}<0\) and \({\pi }_{E}^{NB*}<{\pi }_{E}^{NN*}\); when \(\lambda \ge 0.5359\), there exists a unique \({c}_{0}\) such that \({G}_{2}\ge 0\) and \({\pi }_{E}^{NB*}\ge {\pi }_{E}^{NN*}\) if \(c\le {c}_{0}\), and \({G}_{2}<0\) and \({\pi }_{E}^{NB*}<{\pi }_{E}^{NN*}\) if \(c>{c}_{0}\). \(\square\)

Proof of Lemma 3

For Problem (7), it is straightforward that \({\pi }_{{S}_{i}}^{BB}({q}_{i}^{BB})\) is a concave function with respect to \({q}_{i}^{BB}\). According to the first-order condition, the optimal production quantities are \({q}_{i}^{BB}=\frac{2{kq}_{i}^{BB}-2{q}_{i}^{BB}+a-\lambda {q}_{3-i}^{BB}-ka+k\lambda {q}_{3-i}^{BB}}{1+{r}_{{b}_{i}}^{BB}}\). Therefore, we have \({q}_{i}^{BB*}=\frac{\lambda ka-2ka-\lambda a-2c+2a-2c{r}_{{b}_{3-i}}^{BB}+\lambda c+\lambda c{r}_{{b}_{i}}^{BB}}{(\lambda +2)(2-\lambda )(1-k)}\). Substituting \({q}_{i}^{BB*}\) into Problem (8), according to the first-order condition, we have \({r}_{{b}_{1}}^{BB*}={r}_{{b}_{2}}^{BB*}=\frac{\left(1-k\right)a-c}{2c}>0\). Since \(\frac{{\partial }^{2}{\pi }_{B}^{BB}}{\partial {({r}_{{b}_{1}}^{BB})}^{2}}{|}_{{r}_{{b}_{1}}^{BB*}}<0\) and \(\frac{{\partial }^{2}{\pi }_{B}^{BB}}{\partial {({r}_{{b}_{1}}^{BB})}^{2}}\frac{{\partial }^{2}{\pi }_{B}^{BB}}{\partial {({r}_{{b}_{2}}^{BB})}^{2}}-\frac{{\partial }^{2}{\pi }_{B}^{BB}}{\partial {r}_{{b}_{1}}^{BB}\partial {r}_{{b}_{2}}^{BB}}\frac{{\partial }^{2}{\pi }_{B}^{BB}}{\partial {r}_{{b}_{2}}^{BB}\partial {r}_{{b}_{1}}^{BB}}{|}_{({r}_{{b}_{1}}^{BB*}, {r}_{{b}_{2}}^{BB*})}>0\), then \(({r}_{{b}_{1}}^{BB*},{r}_{{b}_{2}}^{BB*})\) is the unique optimal solution. Further, we obtain \({q}_{1}^{BB*}\) and \({q}_{2}^{BB*}\). \(\square\)

Proof of Lemma 4

From Problem (9), we obtain \(\frac{\partial {\pi }_{{S}_{i}}^{EE}}{\partial {q}_{i}^{EE}}=\left(k-1\right)\left(2{q}_{i}^{EE}-a+\lambda {q}_{3-i}^{EE}\right)-c({r}_{{e}_{i}}^{EE}+1)\). According to the first-order condition, we have \({q}_{i}^{EE}=\frac{2{kq}_{i}^{EE}-2{q}_{i}^{EE}+a-\lambda {q}_{3-i}^{EE}-ka+k\lambda {q}_{3-i}^{EE}}{1+{r}_{{e}_{i}}^{EE}}\).

Therefore, \({q}_{i}^{EE*}=\frac{\lambda ka-2ka-\lambda a-2c+2a-2c{r}_{{e}_{3-i}}^{EE}+\lambda c+\lambda c{r}_{{e}_{i}}^{EE}}{(\lambda +2)(2-\lambda )(1-k)}\). Substituting \({q}_{i}^{EE*}\) into Problem (10), then \(\frac{\partial {\pi }_{E}^{EE}}{\partial {r}_{{e}_{i}}^{EE}}=\frac{c\left(\begin{array}{c}8a-8c-16ak-4a\lambda +4c\lambda -16c{r}_{{e}_{i}}^{EE}+8a{k}^{2}-2a{\lambda }^{2}+a{\lambda }^{3}+2c{\lambda }^{2}-\\ c{\lambda }^{3}+4c{\lambda }^{2}{r}_{{e}_{i}}^{EE}-2c{\lambda }^{3}{r}_{{e}_{3-i}}^{EE}+2a{k}^{2}{\lambda }^{2}+12ak\lambda -4ck\lambda +8ck{r}_{{e}_{i}}^{EE}+\\ 8c\lambda {r}_{{e}_{3-i}}^{EE}-8a{k}^{2}\lambda -ak{\lambda }^{3}+4ck{\lambda }^{2}-ck{\lambda }^{3}-8ck\lambda {r}_{{e}_{3-i}}^{EE}+2ck{\lambda }^{2}{r}_{{e}_{i}}^{EE}\end{array}\right)}{{\left(\lambda -2\right)}^{2}{\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}}\). From the first-order condition, we have \({r}_{{e}_{i}}^{EE*}({r}_{{e}_{3-i}}^{EE})=\frac{\begin{array}{c}8c-8a+16ak+4a\lambda -4c\lambda -8a{k}^{2}+2a{\lambda }^{2}-a{\lambda }^{3}+c{\lambda }^{3}\\ +2c{\lambda }^{3}{r}_{{e}_{3-i}}^{EE}-2a{k}^{2}{\lambda }^{2}-12ak\lambda +4ck\lambda -8c\lambda {r}_{{e}_{3-i}}^{EE}\\ +8a{k}^{2}\lambda +ak{\lambda }^{3}-4ck{\lambda }^{2}+ck{\lambda }^{3}+8ck\lambda {r}_{{e}_{3-i}}^{EE}-2c{\lambda }^{2}\end{array}}{2c\left(4k+k{\lambda }^{2}+2{\lambda }^{2}-8\right)}\). Therefore, we obtain \({r}_{{e}_{1}}^{EE*}={r}_{{e}_{2}}^{EE*}=\frac{2{k}^{2}a-\lambda kc-\lambda ka-4ka+2a-\lambda c+\lambda a-2c}{2c\left(2+\lambda -k\right)}\). Since \(\frac{{\partial }^{2}{\pi }_{E}^{EE}}{\partial {\left({r}_{{e}_{1}}^{EE}\right)}^{2}}{|}_{{r}_{{e}_{1}}^{EE*}}<0\) and \(\frac{{\partial }^{2}{\pi }_{E}^{EE}}{\partial {\left({r}_{{e}_{1}}^{EE}\right)}^{2}}\frac{{\partial }^{2}{\pi }_{E}^{EE}}{\partial {\left({r}_{{e}_{2}}^{EE}\right)}^{2}}-\frac{{\partial }^{2}{\pi }_{E}^{EE}}{\partial {r}_{{e}_{1}}^{EE}\partial {r}_{{e}_{2}}^{EE}}\frac{{\partial }^{2}{\pi }_{E}^{EE}}{\partial {r}_{{e}_{2}}^{EE}\partial {r}_{{e}_{1}}^{EE}}{|}_{\left({r}_{{e}_{1}}^{EE*},{ r}_{{e}_{2}}^{EE*}\right)}>0\), then \(({r}_{{e}_{1}}^{EE*},{ r}_{{e}_{2}}^{EE*})\) is the unique optimal solution.

Let \(y=2{k}^{2}a-\lambda kc-\lambda ka-4ka+2a-\lambda c+\lambda a-2c\), we find that \(y\) decreases with \(c\), \(y{|}_{c=0}=a\left(1-k\right)\left(2+\lambda -2k\right)>0\) and \(y{|}_{c=(1-k)a}=ak\left(\lambda +2\right)\left(k-1\right)<0\). Therefore, there exists a unique \({c}_{1}\) such that \(y\le 0\) if \(c\ge {c}_{1}\), and \(y>0\) if \(c<{c}_{1}\). This implies that \({r}_{{e}_{1}}^{EE*}={r}_{{e}_{2}}^{EE*}=\frac{2{k}^{2}a-\lambda kc-\lambda ka-4ka+2a-\lambda c+\lambda a-2c}{2c\left(2+\lambda -k\right)}\) if \(c<{c}_{1}\), and \({r}_{{e}_{1}}^{EE*}={r}_{{e}_{2}}^{EE*}=0\) if \(c\ge {c}_{1}\). Furthermore, we obtain \({q}_{1}^{EE*}\) and \({q}_{2}^{EE*}\). \(\square\)

Proof of Lemma 5

Proof of Lemma 5 is similar to that of Lemma 2, and hence is omitted.\(\square\)

Proof of Proposition 6

Proof of Proposition 6 is similar to that of Proposition 1, and hence is omitted. \(\square\)

Proof of Proposition 7

For Part (i),

(1) If \(0\le c<{c}_{1}\), then \({r}_{{b}_{1}}^{BB*}-{r}_{{e}_{1}}^{EB*}=\frac{{z}_{1}}{2c\left(k{\lambda }^{4}-4k{\lambda }^{2}-32k-20{\lambda }^{2}+{\lambda }^{4}+64\right)}\), where \({z}_{1}=\) \(32ak+16a\lambda +32ck-16c\lambda -32{ak}^{2}+4a{\lambda }^{2}-4a{\lambda }^{3}-a{\lambda }^{4}-4c{\lambda }^{2}+4c{\lambda }^{3}+c{\lambda }^{4}-4a{k}^{2}{\lambda }^{2}-4a{k}^{2}{\lambda }^{3}+a{k}^{2}{\lambda }^{4}-64ak\lambda +16ck\lambda +48a{k}^{2}\lambda +8ak{\lambda }^{3}+ck{\lambda }^{4}-20ck{\lambda }^{2}+ 4ck{\lambda }^{3}\). Since \({z}_{1}\) is a monotone function with respect to \(c\), \({z}_{1}{|}_{c=0}>0\) and \({z}_{1}{|}_{c={c}_{1}}>0\), we obtain \({z}_{1}>0\) and \({r}_{{b}_{1}}^{BB*}>{r}_{{e}_{1}}^{EB*}\).

$${r}_{{b}_{1}}^{BE*}-{r}_{{e}_{1}}^{EE*}=\frac{{z}_{2}}{2c\left(k-\lambda -2\right)\left(k{\lambda }^{4}-4k{\lambda }^{2}-32k-20{\lambda }^{2}+{\lambda }^{4}+64\right)}$$

, where \({z}_{2}=32a\lambda -64ak-64ck-32c\lambda +96a{k}^{2}-32a{k}^{3}+24a{\lambda }^{2}-4a{\lambda }^{3}-a{\lambda }^{5}-6a{\lambda }^{4}+32c{k}^{2}-24c{\lambda }^{2} +4c{\lambda }^{3}+ 6c{\lambda }^{4}+c{\lambda }^{5}+24a{k}^{2}{\lambda }^{2}+8a{k}^{2}{\lambda }^{3}-16a{k}^{3}{\lambda }^{2}-4a{k}^{2}{\lambda }^{4}-a{k}^{2}{\lambda }^{5}+2a{k}^ {3}{\lambda }^{4}+8c{k}^{2}{\lambda }^{3}-2c{k}^{2}{\lambda }^{4}-c{k}^{2}{\lambda }^{5}-48ak\lambda -16ck\lambda -32ak{\lambda }^{2}+16a{k}^{2}\lambda -4ak{\lambda }^{3}+8ak{\lambda }^{4}+2ak{\lambda }^{5}+48ck{\lambda }^{2}+16c{k}^{2}\lambda +12ck{\lambda }^{3}-4ck{\lambda }^{4}\). We observe that \({z}_{2}\) decreases with \(c\), \({z}_{2}{|}_{c={c}_{1}}<0\) and \({z}_{2}{|}_{c=0}=a\left(k-1\right){z}_{3}\), where \({z}_{3}=2{k}^{2}{\lambda }^{4}-16{k}^{2}{\lambda }^{2}-32{k}^{2}-k{\lambda }^{5}-2k{\lambda }^{4}-32\lambda +8k{\lambda }^{3}+8k{\lambda }^{2}+16k\lambda +64k+{\lambda }^{5}+6{\lambda }^{4}+4{\lambda }^{3}-24{\lambda }^{2}\). Since \({z}_{3}\) increases with \(k\), \({z}_{3}{|}_{k=0}\) \(<0\) and \({z}_{3}{|}_{k=1}>0\), then there exists a unique \({k}_{0}\) such that \({z}_{3}>0\) and \({z}_{2}{|}_{c=0}<\) \(0\) if \(k>{k}_{0}\), and \({z}_{3}<0\) and \({z}_{2}{|}_{c=0}>0\) if \(k<{k}_{0}\).

Therefore, when \(k>{k}_{0}\), we have \({z}_{2}{|}_{c={c}_{1}}<0\) and \({z}_{2}{|}_{c=0}<0\), i.e., \({r}_{{b}_{1}}^{BE*}>{r}_{{e}_{1}}^{EE*}\); when \(k<{k}_{0}\), we have \({z}_{2}{|}_{c=0}>0\) and \({z}_{2}{|}_{c={c}_{1}}<0\). There exists a unique \({\overline{c}}_{12}\) such that \({r}_{{b}_{1}}^{BE*}>{r}_{{e}_{1}}^{EE*}\) if \(c>{\overline{c}}_{12}\), and \({r}_{{b}_{1}}^{BE*}\le {r}_{{e}_{1}}^{EE*}\) if \(c\le {\overline{c}}_{12}\).

(2) If \({c}_{1}\le c<{c}_{2}\), then \({r}_{{b}_{1}}^{BB*}-{r}_{{e}_{1}}^{EB*}=\frac{{z}_{1}}{2c\left(k{\lambda }^{4}-4k{\lambda }^{2}-32k-20{\lambda }^{2}+{\lambda }^{4}+64\right)}>0\) and \({r}_{{b}_{1}}^{BE*}\) \(-{r}_{{e}_{1}}^{EE*}=\frac{\left(2-\lambda \right)\left(2+\lambda \right)\left(\begin{array}{c}8a-8c+{\lambda }^{2}c-a{\lambda }^{2}+k{\lambda }^{2}c+a{\lambda }^{2}k-2\lambda kc\\ -2\lambda a+2\lambda ka+2\lambda c-12ka+4{k}^{2}a+4kc\end{array}\right)}{c\left({\lambda }^{4}+{\lambda }^{4}k-20{\lambda }^{2}-4k{\lambda }^{2}-32k+64\right)}>0\);

(3) If \({c}_{2}\le c<{c}_{3}\), then \({r}_{{b}_{1}}^{BB*}-{r}_{{e}_{1}}^{EB*}=\frac{\left(1-k\right)a-c}{2c}>0\) and \({r}_{{b}_{1}}^{BE*}-{r}_{{e}_{1}}^{EE*}=\frac{\left(2-\lambda \right)\left[\left(1-k\right)a-c\right]}{4c}>0\);

(4) If \(c\ge {c}_{3}\), then \({r}_{{b}_{1}}^{BB*}-{r}_{{e}_{1}}^{EB*}=\frac{\left(1-k\right)a-c}{2c}>0\) and \({r}_{{b}_{1}}^{BE*}-{r}_{{e}_{1}}^{EE*}=0\).

Similar to the proof of Part (i), we easily obtain Part (ii), Part (iii) and Part (iv). \(\square\)

Proof of Proposition 8

From seller 1’s perspective,

  1. (1)

    \(0\le c<{c}_{1}\)

If seller 2 adopts bank credit, then \({\pi }_{{S}_{1}}^{EB*}-{\pi }_{{S}_{1}}^{BB*}=\frac{{F}_{1}{F}_{2}}{4{\left(\lambda +2\right)}^{2}\left(1-k\right){\left(\begin{array}{c}{\lambda }^{4}+{\lambda }^{4}k-20{\lambda }^{2}\\ -4k{\lambda }^{2}-32k+64\end{array}\right)}^{2}}\), where \({F}_{1}=128c-128a+160ak-16a\lambda -96kc+16\lambda c-32a{k}^{2}+36a{\lambda }^{2}+4a{\lambda }^{3}-a{\lambda }^{4}-36{\lambda }^{2}c-4{\lambda }^{3}c+{\lambda }^{4}c+4k{\lambda }^{2}c+4k{\lambda }^{3}c+k{\lambda }^{4}c-20a{k}^{2}{\lambda }^{2}-8ak{\lambda }^{3}+4a{k}^{2}{\lambda }^{3}+3a{k}^{2}{\lambda }^{4}+48ak\lambda -32k\lambda c-16ak{\lambda }^{2}-32a{k}^{2}\lambda -2ak{\lambda }^{4}<0\), \({F}_{2}=16\lambda c-16a\lambda -32kc-32ak+32a{k}^{2}-4a{\lambda }^{2}+4a{\lambda }^{3}+a{\lambda }^{4}+4{\lambda }^{2}c-4{\lambda }^{3}c-{\lambda }^{4}c+12k{\lambda }^{2}c+4k{\lambda }^{3}c-k{\lambda }^{4}c-12a{k}^{2}{\lambda }^{2}+4a{k}^{2}{\lambda }^{3}+a{k}^{2}{\lambda }^{4}+48ak\lambda -32k\lambda c+16ak{\lambda }^{2}-32a{k}^{2}\lambda -8ak{\lambda }^{3}-2ak{\lambda }^{4}<0\). Therefore, \({\pi }_{{S}_{1}}^{EB*}>{\pi }_{{S}_{1}}^{BB*}.\)

If seller 2 adopts e-commerce platform financing, then we have \({\pi }_{{S}_{1}}^{EE*}-{\pi }_{{S}_{1}}^{BE*}=\) \(\frac{{F}_{3}{F}_{4}}{4\left(k-1\right){\left(\lambda -k+2\right)}^{2} {\left({\lambda }^{4}+{\lambda }^{4}k-20{\lambda }^{2}-4k{\lambda }^{2}-32k+64\right)}^{2}}\), where \({F}_{3}=128c-128a+224ak-16a\lambda -160kc+16\lambda c-112a{k}^{2}+16a{k}^{3}+36a{\lambda }^{2}+4a{\lambda }^{3}-a{\lambda }^{4}+48{k}^{2}c+{\lambda }^{4}c-36{\lambda }^{2}c-4{\lambda }^{3}c+20k{\lambda }^{2}c-8{k}^{2}\lambda c-4k{\lambda }^{3}c+a{k}^{2}{\lambda }^{4}+8{k}^{2}{\lambda }^{2}c-{k}^{2}{\lambda }^{4}c+24ak\lambda +8k\lambda c-36ak{\lambda }^{2}-8a{k}^{2}\lambda -4ak{\lambda }^{3}<0\) and \({F}_{4}=32ak-16a\lambda +32kc+16\lambda c-48a{k}^{2}+16a{k}^{3}-4a{\lambda }^{2}+4a{\lambda }^{3}+a{\lambda }^{4}-16{k}^{2}c+4{\lambda }^{2}c-4{\lambda }^{3}c-{\lambda }^{4}c-12k{\lambda }^{2}c-8{k}^{2}\lambda c-4k{\lambda }^{3}c+8a{k}^{2}{\lambda }^{2}-a{k}^{2}{\lambda }^{4}+{k}^{2}{\lambda }^{4}c+24ak\lambda +8k\lambda c-4ak{\lambda }^{2}-8a{k}^{2}\lambda -4ak{\lambda }^{3}\). We observe that \({F}_{4}\) increases with \(c\), \({F}_{4}{|}_{c={c}_{1}}>0\) and \({F}_{4}{|}_{c=0}=a(k-1){y}_{2}\), where \({y}_{2}=16{k}^{2}-{\lambda }^{4}k+8k{\lambda }^{2}-8\lambda k-32k+4{\lambda }^{2}-4{\lambda }^{3}-{\lambda }^{4}+16\lambda\), \({y}_{2}\) decreases with \(k\), \({y}_{2}{|}_{k=0}=-{\lambda }^{4}+4{\lambda }^{2}-4{\lambda }^{3}+16\lambda >0\) and \({y}_{2}{|}_{k=1}=2\left({\lambda }^{2}+2\lambda -4\right)\left(2-{\lambda }^{2}\right)<0\). Hence, there exists a unique \({k}_{2}\) such that \({y}_{2}{|}_{k=0}>0\) and \({F}_{4}{|}_{c=0}<0\) if \(k<{k}_{2}\), and \({y}_{2}{|}_{k=0}\le 0\) and \({F}_{4}{|}_{c=0}\ge 0\) if \(k\ge {k}_{2}\), where \({k}_{2}\) holds \(16{k}^{2}-{\lambda }^{4}k+8k{\lambda }^{2}-{\lambda }^{4}\) \(-8\lambda k-32k+4{\lambda }^{2}-4{\lambda }^{3}+16\lambda =0\).

To sum up, when \(k\ge {k}_{2}\), then \({F}_{4}\ge 0\) and \({\pi }_{{S}_{1}}^{EE*}\ge {\pi }_{{S}_{1}}^{BE*}\); when \(k<{k}_{2}\), there exists a unique \({\overline{c}}_{1}\in (0,{c}_{1})\) such that \({F}_{4}<0\) and \({\pi }_{{S}_{1}}^{EE*}<{\pi }_{{S}_{1}}^{BE*}\) if \(c<{\overline{c}}_{1}\), and \({F}_{4}\ge 0\) and \({\pi }_{{S}_{1}}^{EE*}\ge {\pi }_{{S}_{1}}^{BE*}\) if \(c\ge {\overline{c}}_{1}\)

  1. (2)

    \({c}_{1}\le c<{c}_{2}.\)

If seller 2 adopts bank credit, then \({\pi }_{{S}_{1}}^{EB*}-{\pi }_{{S}_{1}}^{BB*}=\frac{{F}_{1}{F}_{2}}{4{\left(\lambda +2\right)}^{2}\left(1-k\right){\left(\begin{array}{c}{\lambda }^{4}+{\lambda }^{4}k-20{\lambda }^{2}\\ -4k{\lambda }^{2}-32k+64\end{array}\right)}^{2}}\), \(>0\). If seller 2 adopts e-commerce platform financing, then \({\pi }_{{S}_{1}}^{EE*}-{\pi }_{{S}_{1}}^{BE*}=\frac{(2-\lambda ){F}_{5}{F}_{6}}{{\left(\lambda +2\right)}^{2}\left(1-k\right){\left({\lambda }^{4}+{\lambda }^{4}k-20{\lambda }^{2}-4k{\lambda }^{2}-32k+64\right)}^{2}}\), where \({F}_{5}=16a-16c-24ak+4a\lambda +8kc\) \(-4\lambda c+8a{k}^{2}-4a{\lambda }^{2}-a{\lambda }^{3}+4{\lambda }^{2}c+{\lambda }^{3}c+4k{\lambda }^{2}c+k{\lambda }^{3}c+2a{k}^{2}{\lambda }^{2}+a{k}^{2}{\lambda }^{3}-\) \(4ak\lambda +4k\lambda c+2ak{\lambda }^{2}>0\) and \({F}_{6}=96a-96c-144ak+8a\lambda +48kc-8\lambda c+48a{k}^{2}-28a{\lambda }^{2}-2a{\lambda }^{3}+a{\lambda }^{4}+28{\lambda }^{2}c+2{\lambda }^{3}c-{\lambda }^{4}c+4k{\lambda }^{2}c+2k{\lambda }^{3}c-k{\lambda }^{4}c+4a{k}^{2}{\lambda }^{2}-a{k}^{2}{\lambda }^{4}-16ak\lambda +24ak{\lambda }^{2}+8a{k}^{2}\lambda +2ak{\lambda }^{3}>0\). Hence, \({\pi }_{{S}_{1}}^{EE*}>{\pi }_{{S}_{1}}^{BE*}\). We conclude that seller 1 always prefers e-commerce platform financing.

  1. (3)

    \({c}_{2}\le c<{c}_{3}\)

If seller 2 adopts bank credit, then \({\pi }_{{S}_{1}}^{EB*}-{\pi }_{{S}_{1}}^{BB*}=\frac{{[\left(1-k\right)a-c]}^{2}\left(\lambda +6\right)}{16\left(\lambda +2\right)\left(1-k\right)}>0\); if seller 2 adopts e-commerce platform financing, then \({\pi }_{{S}_{1}}^{EE*}-{\pi }_{{S}_{1}}^{BE*}=\frac{{3\left[\left(1-k\right)a-c\right]}^{2}}{4{\left(\lambda +2\right)}^{2}\left(1-k\right)}>0\). Therefore, seller 1 prefers e-commerce platform financing.

  1. (4)

    \(c\ge {c}_{3}\)

If seller 2 adopts bank credit, then \({\pi }_{{S}_{1}}^{EB*}-{\pi }_{{S}_{1}}^{BB*}=\frac{{\left(\lambda +1\right)\left(\lambda +3\right)\left[\left(1-k\right)a-c\right]}^{2}}{4{\left(\lambda +2\right)}^{2}\left(1-k\right)}>0\); if seller 2 adopts e-commerce platform financing, we have \({\pi }_{{S}_{1}}^{EE*}-{\pi }_{{S}_{1}}^{BE*}=\frac{{[\left(1-k\right)a-c]}^{2}}{{\left(\lambda +2\right)}^{2}\left(1-k\right)}\) \(>0\). Therefore, it is optimal for seller 1 to adopt e-commerce platform financing.\(\square\)

Proof of Proposition 9

  1. (i)

    First, if \(c<{c}_{2}\), then \({\pi }_{E}^{BB*}-{\pi }_{E}^{BE*}={M}_{1}-{M}_{5}<0\); if \({c}_{2}\le c<{c}_{3}\), then \({\pi }_{E}^{BB*}\) \(-{\pi }_{E}^{BE*}=\frac{k\left(c-a+ak\right)\left(2a+6c-2ak-a\lambda +5c\lambda +ak\lambda \right)}{16{\left(k-1\right)}^{2}\left(\lambda +2\right)}<0\); if \(c\ge {c}_{3}\), then \({\pi }_{E}^{BB*}-{\pi }_{E}^{BE*}=\) \(\frac{a\lambda \left(k-1\right)\left(20k-8\lambda +2k\lambda +k{\lambda }^{3}+8{\lambda }^{2}+2{\lambda }^{3}-32\right)}{4k+2\lambda -2k\lambda +k{\lambda }^{2}+{\lambda }^{2}-8}<0\). Therefore, \({\pi }_{E}^{BB*}<{\pi }_{E}^{BE*}\).

    Second, if \(c<{c}_{1}\), then \({\pi }_{E}^{BB*}-{\pi }_{E}^{EE*}=\frac{k\left(3ak-c-3a-a\lambda -c\lambda +ak\lambda \right)\left(c-a+ak\right)}{2{\left(k-1\right)}^{2}{\left(\lambda +2\right)}^{2}}-\frac{{\left(a-c\right)}^{2}}{2\left(2+\lambda -k\right)}\) \(<0\); if \(c\ge {c}_{1}\), then \({\pi }_{E}^{BB*}-{\pi }_{E}^{EE*}=\) \(\frac{k\left(c-a+ak\right)\left(a+3c-ak-a\lambda +3c\lambda +ak\lambda \right)}{2{\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}}<0\). Therefore, \({\pi }_{E}^{BB*}<{\pi }_{E}^{EE*}\).

  2. (ii)

    If \(c<{c}_{1}\), then \({\pi }_{E}^{EB*}-{\pi }_{E}^{EE*}={M}_{5}-\frac{{\left(a-c\right)}^{2}}{2\left(2+\lambda -k\right)}<0\);

    If \({c}_{1}\le c<{c}_{2}\), then \({\pi }_{E}^{EB*}-{\pi }_{E}^{EE*}=\frac{\left(2-\lambda \right){T}_{1}}{{\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}{\left(32k+4k{\lambda }^{2}-k{\lambda }^{4}+20{\lambda }^{2}-{\lambda }^{4}-64\right)}^{2}}\), where \({T}_{1}=\frac{[{M}_{5}{\left(k-1\right)}^{2}{\left(\lambda +2\right)}^{2}-2k\left(ak-c-a-c\lambda \right)\left(c-a+ak\right)]{\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}{\left(32k+4k{\lambda }^{2}-k{\lambda }^{4}+20{\lambda }^{2}-{\lambda }^{4}-64\right)}^{2} }{\left(2-\lambda \right){\left(k-1\right)}^{2}{\left(\lambda +2\right)}^{2}}\) and is a monotone function with respect to \(c\).

    When \(c={c}_{1}\), we have \({T}_{1}<0\);

    When \(c={c}_{2}\), we have \({T}_{1}=\frac{{a}^{2}{k}^{2}\left(2-\lambda \right){\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}{\left(k{\lambda }^{4}-4k{\lambda }^{2}-32k-20{\lambda }^{2}+{\lambda }^{4}+64\right)}^{2}}{{\left(4k{\lambda }^{2}-4k\lambda -4\lambda +k{\lambda }^{3}+4{\lambda }^{2}+{\lambda }^{3}-16\right)}^{2}}{T}_{2}\), where \({T}_{2}=12k-4\lambda +4k\lambda -k{\lambda }^{2}+k{\lambda }^{3}+4{\lambda }^{2}+{\lambda }^{3}-16\) increases with \(k\), \({T}_{2}{|}_{k=0}<0\) and \({T}_{2}{|}_{k=1}=2{\lambda }^{3}+3{\lambda }^{2}-4\). We show that if \(\lambda >0.911\), then \({T}_{2}{|}_{k=1}>0\); if \(\lambda \le 0.911\), then \({T}_{2}{|}_{k=1}<0\). Therefore, when \(\lambda \le 0.911\), we have \({T}_{2}<0\); when \(\lambda >0.911\), we have \({T}_{2}{|}_{k=0}<0\) and \({T}_{2}{|}_{k=1}>0\), then there exists a unique \({k}_{22}=\frac{- {\lambda }^{3}-4{\lambda }^{2}+4\lambda +16}{{\lambda }^{3}-{\lambda }^{2}+4\lambda +12}\) such that if \(k<{k}_{22}\), then \({T}_{2}<0\); if \(k\ge {k}_{22}\), then \({T}_{2}\ge 0\).

    We conclude that: (1) when \(\lambda \le 0.911\), we have \({T}_{1}\le 0\) and \({\pi }_{E}^{EB*}\le {\pi }_{E}^{EE*}\); (2) when \(\lambda >0.911\) and \(k<{k}_{22}\), we have \({T}_{1}\le 0\) and \({\pi }_{E}^{EB*}\le {\pi }_{E}^{EE*}\); (3) when \(\lambda >0.911\) and \(k\ge {k}_{22}\), there exists a unique \({c}_{11}\in [{c}_{1},{c}_{2})\) such that if \(c<{c}_{11}\), then \({T}_{1}>0\) and \({\pi }_{E}^{EB*}>{\pi }_{E}^{EE*}\); if \(c\ge {c}_{11}\), then \({T}_{1}\le 0\) and \({\pi }_{E}^{EB*}\le {\pi }_{E}^{EE*}\).

    If \({c}_{2}\le c<{c}_{3}\), then \({\pi }_{E}^{EB*}-{\pi }_{E}^{EE*}=\frac{k\left(a-ak-c\right)}{16{\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}}{T}_{3}\), where \({T}_{3}=4ak-12c-4a\) \(+8a\lambda -8c\lambda -a{\lambda }^{2}+5c{\lambda }^{2}-8ak\lambda +ak{\lambda }^{2}\). We show that \({T}_{3}\) decreases with \(c\), \({T}_{3}{|}_{c={c}_{3}}<0\) and \({T}_{3}{|}_{c={c}_{2}}=\frac{4a\left(2-\lambda \right)\left(\lambda +2\right)\left(1-k\right)}{4\lambda +4k\lambda -4k{\lambda }^{2}-k{\lambda }^{3}-4{\lambda }^{2}-{\lambda }^{3}+16}{T}_{2}\). Hence, when \(\lambda \le 0.911\), we have \({T}_{3}\le 0\) and \({\pi }_{E}^{EB*}\le {\pi }_{E}^{EE*}\); (2) when \(\lambda >0.911\) and \(k<{k}_{22}\), we have \({T}_{3}\le 0\) and \({\pi }_{E}^{EB*}\le {\pi }_{E}^{EE*}\); (3) when \(\lambda >0.911\) and \(k\ge {k}_{22}\), there exists a unique \({c}_{22}\in [{c}_{2},{c}_{3})\) such that if \(c<{c}_{22}\), then \({T}_{3}>0\) and \({\pi }_{E}^{EB*}>{\pi }_{E}^{EE*}\); if \(c\ge {c}_{22}\), then \({T}_{3}\le 0\) and \({\pi }_{E}^{EB*}\le {\pi }_{E}^{EE*}\).

    If \(c\ge {c}_{3}\), then \({\pi }_{E}^{EE*}-{\pi }_{E}^{EB*}=\frac{k\left(a-ak-c\right)\left(4a+4c-4ak-4a\lambda +4c\lambda -a{\lambda }^{2}-c{\lambda }^{2}+4ak\lambda +ak{\lambda }^{2}\right)}{4{\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}}>0\).

    To sum up, if \(\lambda >0.911\), \(k\ge {k}_{22}\) and \(c\in ({c}_{1},{c}_{11})\cup ({c}_{2},{c}_{22})\), then \({\pi }_{E}^{EE*}<{\pi }_{E}^{EB*}\); otherwise, \({\pi }_{E}^{EE*}\ge {\pi }_{E}^{EB*}\).

  3. (iii)

    First, if \(c<{c}_{2}\), then \({\pi }_{B}^{BB*}-{\pi }_{B}^{BE*}=\frac{{[\left(1-k\right)a-c]}^{2}}{2\left(1-k\right)\left(\lambda +2\right)}-{M}_{4}>0\); if \({c}_{2}\le c<{c}_{3}\), then \({\pi }_{B}^{BB*}-{\pi }_{B}^{BE*}=\frac{{\left[\left(1-k\right)a-c\right]}^{2}}{8\left(1-k\right)}>0\); if \(c\ge {c}_{3}\), then \({\pi }_{B}^{BB*}-{\pi }_{B}^{BE*}=\frac{{\left[\left(1-k\right)a-c\right]}^{2}}{2\left(1-k\right)\left(\lambda +2\right)}>0\). Therefore, \({\pi }_{B}^{BB*}>{\pi }_{B}^{BE*}\).

Second, since \({\pi }_{B}^{EE*}\) is always equal to 0, then we easily have \({\pi }_{B}^{BB*}>{\pi }_{B}^{BE*}>{\pi }_{B}^{EE*}\).\(=0.\square\)

Proof of Proposition 10

  1. (i)

    \({\pi }_{{S}_{1}}^{NN*}-{\pi }_{{S}_{1}}^{BB*}={\pi }_{{S}_{2}}^{NN*}-{\pi }_{{S}_{2}}^{BB*}=\frac{3{\left(c-a+ak\right)}^{2}}{4\left(1-k\right){\left(\lambda +2\right)}^{2}}>0\);

    If \(c<{c}_{1}\), then \({\pi }_{{S}_{1}}^{NN*}-{\pi }_{{S}_{1}}^{EE*}={\pi }_{{S}_{2}}^{NN*}-{\pi }_{{S}_{2}}^{EE*}=\frac{\left(\begin{array}{c}6a-6c-8ak+3a\lambda +4ck\\ -3c\lambda +2a{k}^{2}-3ak\lambda +ck\lambda \end{array}\right)\left(\begin{array}{c}2a-2c-4ak+a\lambda -c\lambda \\ +2a{k}^{2}-ak\lambda -ck\lambda \end{array}\right)}{4{\left(\lambda +2\right)}^{2}\left(1-k\right){\left(\lambda -k+2\right)}^{2}}>0\);

    If \(c\ge {c}_{1}\), then \({\pi }_{{S}_{1}}^{NN*}-{\pi }_{{S}_{1}}^{EE*}={\pi }_{{S}_{2}}^{NN*}-{\pi }_{{S}_{2}}^{EE*}=0\).

    Therefore, \({\pi }_{{S}_{1}}^{NN*}-{\pi }_{{S}_{1}}^{EE*}={\pi }_{{S}_{2}}^{NN*}-{\pi }_{{S}_{2}}^{EE*}\ge 0\).

  2. (ii)

    Proof of Part (ii) is similar to that of Part (i), and hence is omitted. \(\square\)

Proof of Proposition 11

  1. (i)

    First, \({\pi }_{E}^{BB*}-{\pi }_{E}^{NN*}=\frac{k\left(c-a+ak\right)\left(a+3c-ak-a\lambda +3c\lambda +ak\lambda \right)}{2{\left(\lambda +2\right)}^{2}{\left(1-k\right)}^{2}}<0\);

    Second, if \(c<{c}_{1}\), then \({\pi }_{E}^{EE*}-{\pi }_{E}^{NN*}=\frac{{\left(2a-2c-4ak+a\lambda -c\lambda +2a{k}^{2}-ak\lambda -ck\lambda \right)}^{2}}{2{\left(\lambda +2\right)}^{2}{\left(1-k\right)}^{2}\left(2+\lambda -k\right)}>0\); if \(c\ge {c}_{1}\), then \({\pi }_{E}^{EE*}-{\pi }_{E}^{NN*}=0\). Therefore, \({\pi }_{E}^{EE*}\ge {\pi }_{E}^{NN*}\).

  2. (ii)

    If \(c<{c}_{2}\), then \({\pi }_{E}^{BE*}-{\pi }_{E}^{NN*}=\frac{\left(2-\lambda \right){T}_{1}}{{\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}{\left(32k+4k{\lambda }^{2}-k{\lambda }^{4}+20{\lambda }^{2}-{\lambda }^{4}-64\right)}^{2}}\).

    When \(c=0\), we have \({T}_{1}={a}^{2}{\left(k-1\right)}^{2}{T}_{4}\), where \({T}_{4}\) decreases with \(k\), \({T}_{4}{|}_{k=0}>0\) and \({T}_{4}{|}_{k=1}=-\left(2{\lambda }^{4}-9{\lambda }^{3}-22{\lambda }^{2}-4\lambda +8\right){\left({\lambda }^{2}+2\lambda -4\right)}^{2}\). We show that if \(>\) \(0.484\), then \({T}_{4}{|}_{k=1}>0\); if \(\lambda \le 0.484\), then \({T}_{4}{|}_{k=1}\le 0\). Therefore, when \(\lambda >0.484\), we have \({T}_{4}>0\); when \(\lambda \le 0.484\), there exist a unique \({k}_{11}\) such that if \(k\ge {k}_{11}\), then \({T}_{4}\le 0\); if \(k<{k}_{11}\), then \({T}_{4}>0\).

    When \(c={c}_{2}\), then \({T}_{1}=\frac{{a}^{2}{k}^{2}\left(2-\lambda \right){\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}{\left(k{\lambda }^{4}-4k{\lambda }^{2}-32k-20{\lambda }^{2}+{\lambda }^{4}+64\right)}^{2}}{{\left(4k{\lambda }^{2}-4k\lambda -4\lambda +k{\lambda }^{3}+4{\lambda }^{2}+{\lambda }^{3}-16\right)}^{2}}{T}_{2}\). Hence, when \(\lambda \le 0.911\), we have \({T}_{2}<0\); when \(\lambda >0.911\), we have \({T}_{2}{|}_{k=0}<0\) and \({T}_{2}{|}_{k=1}>0\), then there exists a unique \({k}_{22}\) (\({k}_{22}<{k}_{11}\)) such that if \(k<{k}_{22}\), then \({T}_{2}<0\), and if \(k\ge {k}_{22}\), then \({T}_{2}\ge 0\).

    We conclude that: (1) When \(\lambda \le 0.484\), \(k>{k}_{11}\) and \(c<{c}_{2}\), then \({T}_{1}\le 0\) and \({\pi }_{E}^{BE*}\le {\pi }_{E}^{NN*}\); (2) when \(\lambda >0.484\), \(k>{k}_{22}\) and \(c<{c}_{2}\), then \({T}_{1}>0\) and \({\pi }_{E}^{BE*}>{\pi }_{E}^{NN*}\); (3) when \(\lambda \le 0.484\) and \(k\le {k}_{11}\) or when \(0.484<\lambda \le 0.911\) or \(\lambda >0.911\) and \(k\le {k}_{22}\), there exists a unique \({c}_{33}\in [0,{c}_{2})\) such that if \(c<{c}_{33}\), then \({T}_{1}>0\) and \({\pi }_{E}^{BE*}>{\pi }_{E}^{NN*}\); if \(c\ge {c}_{33}\), then \({T}_{1}\le 0\) and \({\pi }_{E}^{BE*}\le {\pi }_{E}^{NN*}\).

    If \({c}_{2}\le c<{c}_{3}\), then \({\pi }_{E}^{BE*}-{\pi }_{E}^{NN*}=\frac{k\left(a-ak-c\right){T}_{3}}{16{\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}}\). Hence, when \(\lambda \le 0.911\), we have \({T}_{3}\le 0\) and \({\pi }_{E}^{EB*}\le {\pi }_{E}^{EE*}\); (2) when \(\lambda >0.911\) and \(k<{k}_{22}\), we have \({T}_{3}\le 0\) and \({\pi }_{E}^{EB*}\le {\pi }_{E}^{EE*}\); (3) when \(\lambda >0.911\) and \(k\ge {k}_{22}\), there exists a unique \({c}_{22}\in [{c}_{2},{c}_{3})\) such that if \(c<{c}_{22}\), then \({T}_{3}>0\) and \({\pi }_{E}^{BE*}>{\pi }_{E}^{EE*}\); if \(c\ge {c}_{22}\), then \({T}_{3}\le 0\) and \({\pi }_{E}^{BE*}\le {\pi }_{E}^{EE*}\).

    If \(c\ge {c}_{3}\), then \({\pi }_{E}^{BE*}-{\pi }_{E}^{NN*}=\frac{k\left(c-a+ak\right)\left(\begin{array}{c}4a+4c-4ak-4a\lambda +4c\lambda -a{\lambda }^{2}\\ -c{\lambda }^{2}+4ak\lambda +ak{\lambda }^{2}\end{array}\right)}{4{\left(\lambda + 2\right)}^{2}{\left(k-1\right)}^{2}}<0\).

    To sum up, if either of the following conditions holds: (1) \(\lambda >0.484\), \(k>{k}_{22}\) and \(c<{c}_{2}\); (2) \(\lambda \le 0.484\), \(k\le {k}_{11}\) and \(c<{c}_{33}\); (3) \(0.484<\lambda \le 0.911\), \(k\le 1\) and \(c<{c}_{33}\); (4) \(\lambda >0.911\), \(k\le {k}_{22}\) and \(c<{c}_{33}\); (5) \(\lambda >0.911\), \(k\ge {k}_{22}\) and \({c}_{2}\le c<{c}_{22}\), then we have \({\pi }_{E}^{BE*}>{\pi }_{E}^{NN*}\); otherwise, \({\pi }_{E}^{EB*}\le {\pi }_{E}^{EE*}\).

  3. (iii)

    Since the bank’s profit is always equal to 0, we easily obtain \({\pi }_{B}^{BB*}>{\pi }_{B}^{NN*}=0\), \({\pi }_{B}^{EE*}={\pi }_{B}^{NN*}=0\) and \({\pi }_{B}^{BE*}\ge {\pi }_{B}^{NN*}=0\).\(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, S., Yan, Q. Online sellers’ financing strategies in an e-commerce supply chain: bank credit vs. e-commerce platform financing. Electron Commer Res 23, 2541–2572 (2023). https://doi.org/10.1007/s10660-022-09552-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10660-022-09552-w

Keywords

Navigation