Abstract
We study a supply chain with two competitive online sellers, in which the seller who suffers from capital distress may borrow from a commercial bank or an e-commerce platform. We consider three different supply chain models depending on how many sellers suffer from capital distress. We characterize the sellers’ optimal production decisions and the lenders’ optimal interest rates, and further examine the sellers’ financing preferences. We demonstrate that the e-commerce platform will charge a zero interest rate to the financially constrained seller if the production cost is beyond a certain threshold. It is observed that the financially constrained seller’s financing preference is correlated with the capital status and financing choice of its rival. Specifically, if only one of the sellers is financially constrained, it is always optimal for the capital-constrained seller to borrow from the e-commerce platform. In contrast, if both sellers suffer from capital distress, the two sellers prefer e-commerce platform financing when the e-commerce platform’s commission rate is relatively high or when the commission ratio is low while the production cost is high. Furthermore, it is more profitable for the bank or e-commerce platform to provide financing service to both capital-constrained sellers.
Similar content being viewed by others
References
Yang, S., & Birge, J. (2018). Trade credit, risk sharing, and inventory financing portfolios. Management Science, 64(8), 3667–3689.
Yan, N., He, X., & Liu, Y. (2019). Financing the capital-constrained supply chain with loss aversion: Supplier finance vs. supplier investment. Omega, 88, 162–178.
Gupta, D., & Chen, Y. (2020). Retailer-direct financing contracts under consignment. Manufacturing and Service Operations Management, 22(3), 528–544.
Cai, G., Chen, X., & Xiao, Z. (2014). The roles of bank and trade credits: Theoretical analysis and empirical evidence. Production and Operations Management, 23(4), 583–598.
Kouvelis, P., & Zhao, W. (2018). Who should finance the supply chain? Impact of credit ratings on supply chain decisions. Manufacturing and Service Operations Management, 20(1), 19–35.
Chen, X. (2015). A model of trade credit in a capital-constrained distribution channel. International Journal of Production Economics, 159, 347–357.
Gupta, D., & Wang, L. (2009). A stochastic inventory model with trade credit. Manufacturing and Service Operations Management, 11(1), 4–18.
Lee, C., & Rhee, B. (2011). Trade credit for supply chain coordination. European Journal of Operational Research, 214(1), 136–146.
Taleizadeh, A., Pentico, D., Jabalameli, M., & Aryanezhad, M. (2013). An EOQ model with partial delayed payment and partial backordering. Omega, 41(2), 354–368.
Jin, W., Zhang, Q., & Luo, J. (2019). Non-collaborative and collaborative financing in a bilateral supply chain with capital constraints. Omega, 88, 210–222.
Zhan, J., Chen, X., & Huang, J. (2021). Trade credit financing for two competitive retailers in a capital-constrained supply chain. Asia-Pacific Journal of Operational Research. https://doi.org/10.1142/S0217595920500451
Li, G., Zheng, H., & Liu, M. Q. (2020). Reselling or drop shipping: Strategic analysis of E-commerce dual-channel structures. Electronic Commerce Research, 20, 475–508.
Zhang, J., Xu, N., & Bai, S. Z. (2021). The optimal pricing decisions for e-tailers with different payment schemes. Electronic Commerce Research, 21, 955–982.
Liu, J., Yang, Y., & Yu, Y. G. (2021). Ordering and interest rate strategies in platform finance with an overconfident and commerce retailer. Transportation Research Part E: Logistics and Transportation Review. https://doi.org/10.1016/j.tre.2021.102430
Wang, C., Fan, X., & Yin, Z. (2019). Financing online retailers: bank vs. electronic business platform, equilibrium, and coordinating strategy. European Journal of Operational Research, 276(1), 343–356.
Yang, H., Zhen, Z., Yan, Q., & Wan, H. (2022). Mixed financing scheme in a capital-constrained supply chain: bank credit and e-commerce platform financing. International Transactions in Operational Research, 29(4), 2423–2447.
Chen, Z., & Zhang, R. (2021). A cash-constrained dynamic lot-sizing problem with loss of goodwill and credit-based loan. International Transactions in Operational Research, 28(5), 2841–2866.
Zhou, Y., Cao, B., Zhong, Y., & Wu, Y. (2017). Optimal advertising/ordering policy and finance mode selection for a capital-constrained retailer with stochastic demand. Journal of the Operational Research Society, 68(12), 1620–1632.
Dada, M., & Hu, Q. (2008). Financing the newsvendor inventory. Operations Research Letters, 36(5), 269–273.
Jing, B., Chen, X., & Cai, G. (2012). Equilibrium financing in a distribution channel with capital constraint. Production and Operations Management, 21(6), 1090–1101.
Chen, X., & Wang, A. (2012). Trade credit contract with limited liability in the supply chain with budget constraints. Annals of Operations Research, 196(1), 153–165.
Yan, N., Sun, B., Zhang, H., & Liu, C. (2016). A partial credit guarantee contract in a capital-constrained supply chain: Financing equilibrium and coordinating structure. International Journal of Production Economics, 173, 122–133.
Alan, Y., & Gaur, V. (2018). Operational investment and capital structure under asset-based lending. Manufacturing and Service Operations Management, 20(4), 637–654.
Bi, C., Zhang, B., Yang, F., Wang, Y., & Bi, G. (2022). Selling to the newsvendor through debt-shared bank financing. European Journal of Operational Research, 296(1), 116–130.
Peura, H., Yang, A., & Lai, G. (2017). Trade credit in competition: A horizontal benefit. Manufacturing and Service Operations Management, 19(2), 263–289.
Zhou, Y., Wen, Z., & Wu, X. (2015). A single-period inventory and payment model with partial trade credit. Computers and Industrial Engineering, 90, 132–145.
Chod, J., Lyandres, E., & Yang, S. (2019). Trade credit and supplier competition. Journal of Financial Economics, 131(2), 484–505.
Chen, X., Cai, G., & Song, J. (2019). The cash flow advantages of 3PLs as supply chain orchestrators. Manufacturing and Service Operations Management, 21(2), 435–451.
Gao, D., Zhao, X., & Geng, W. (2014). A delay-in-payment contract for Pareto improvement of a supply chain with stochastic demand. Omega, 49, 60–68.
Zhan, J., Chen, X., & Hu, Q. (2019). The value of trade credit with rebate contract in a capital-constrained supply chain. International Journal of Production Research, 57(2), 379–396.
Phan, D., Vo, T., & Lai, A. (2019). Supply chain coordination under trade credit and retailer effort. International Journal of Production Research, 57(9), 2642–2655.
Huang, S., Fan, Z., & Wang, X. (2019). The impact of transportation fee on the performance of capital-constrained supply chain under 3PL financing service. Computers and Industrial Engineering, 130, 358–369.
Huang, S., Fan, Z., & Wang, X. (2019). Optimal operational strategies of supply chain under financing service by a 3PL firm. International Journal of Production Research, 57(11), 3405–3420.
Dang, X., Bi, G., Liu, C., & Xu, Y. (2021). Optimal financing strategies with 3PL customized service in a capital-constrained supply chain. Electronic Commerce Research and Applications. https://doi.org/10.1016/j.elerap.2021.101090
Zhen, X., Shi, D., Li, Y., & Zhang, C. (2020). Manufacturer’s financing strategy in a dual-channel supply chain: third-party platform, bank and retailer credit financing. Transportation Research Part E: Logistics and Transportation Review. 10. 1016/j.tre.2019.101820.
Yan, N., Liu, Y., Xu, X., & He, X. (2020). Strategic dual-channel pricing games with e-retailer finance. European Journal of Operational Research, 283(1), 138–151.
Yan, N., Zhang, Y., Xun, X., & Gao, Y. (2021). Online finance with dual channels and bidirectional free-riding effect. International Journal of Production Economics. https://doi.org/10.1016/j.ijpe.2020.107834
Yi, Z., Wang, Y., & Chen, Y. (2021). Financing an agricultural supply chain with a capital-constrained smallholder farmer in developing economies. Production and Operations Management, 30(7), 2102–2121.
Fisman, R., & Raturi, M. (2004). Does competition encourage credit provision? evidence from African trade credit relationships. Review of Economics and Statistics, 86(1), 345–352.
Fabbri, D., & Klapper, L. (2016). Bargaining power and trade credit. Journal of Corporate Finance, 41(7), 66–80.
Yang, H., Zhuo, W., & Shao, L. (2017). Equilibrium evolution in a two-echelon supply chain with financially constrained retailers: The impact of equity financing. International Journal of Production Economics, 185, 139–149.
Qin, J., Zhang, A., Xia, L., & Liu, M. (2017). Retailer order-taking strategies under competing trade credit polices with varying demands. Asia-Pacific Journal of Operational Research, 34(1), 1–17.
Deng, S., Fu, K., Xu, J., & Zhu, K. (2019). The supply chain effects of trade credit under uncertain demands. Omega. https://doi.org/10.1016/j.omega.2019.102113
Wu, D., Zhang, B., & Baron, O. (2019). A trade credit model with asymmetric competing retailers. Production and Operations Management, 28(1), 206–231.
Wang, J., Wang, K., Li, X., & Zhao, R. (2022). Suppliers’ trade credit strategies with transparent credit ratings: Null, exclusive, and nonchalant provision. European Journal of Operational Research, 297(1), 153–163.
Kouvelis, P., & Zhao, W. (2012). Financing the newsvendor: supplier vs. bank, optimal rates and alternative schemes. Operations Research, 60(3), 566–580.
Baron, O., Berman, O., & Wu, D. (2016). Bargaining within the supply chain and its implications in an industry. Decision Sciences, 47(2), 193–218.
Qing, Q., Deng, T., & Wang, H. (2017). Capacity allocation under downstream competition and bargaining. European Journal of Operational Research, 261(1), 97–107.
Acknowledgements
The research is supported by the National Natural Science Foundation of China under Grant No. 717901117.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
Proof of Lemma 1
For Problems (1) and (2), we show that \({\pi }_{{S}_{i}}^{NB}({q}_{i}^{NB})\) is concave in \({q}_{i}^{NB}\). According to the first-order condition, the optimal production quantities are \({q}_{1}^{NB*}=\) \(\frac{2a-2c-2ak-a\lambda +\lambda c+ak\lambda +\lambda c{r}_{{b}_{2}}^{NB}}{\left(2-\lambda \right)\left(\lambda +2\right)\left(1-k\right)}\) and \({q}_{2}^{NB*}=\frac{2a-2c-2ak-a\lambda +\lambda c-2c{r}_{{b}_{2}}^{NB}+ak\lambda }{\left(2-\lambda \right)\left(\lambda +2\right)\left(1-k\right)}\). Substituting \({q}_{2}^{NB*}\) into Eq. (3), we show that \({\pi }_{B}^{NB}({r}_{{b}_{2}}^{NB})\) is also a concave function with respect to \({r}_{{b}_{2}}^{NB}\). Therefore, the optimal interest rate is \({r}_{{b}_{2}}^{NB*}=\frac{\left(2-\lambda \right)[a\left(1-k\right)-c]}{4c}>0\). Substituting \({r}_{{b}_{2}}^{NB*}\) into \({q}_{1}^{NB*}\) and \({q}_{2}^{NB*}\), we further obtain \({q}_{1}^{NB*}=\frac{\left(\lambda +4\right)[a\left(1-k\right)-c]}{4\left(1-k\right)\left(\lambda +2\right)}\) and \({q}_{2}^{NB*}=\frac{a\left(1-k\right)-c}{2\left(1-k\right)\left(\lambda +2\right)}\).\(\square\)
Proof of Lemma 2
For Problems (4) and (5), it is straightforward that \({\pi }_{{S}_{i}}^{NE}({q}_{i}^{NE})\) is concave in \({q}_{i}^{NE}\). According to the first-order condition, the optimal production quantities are \({q}_{1}^{NE*}=\frac{2a-2c-2ak-a\lambda +\lambda c+ak\lambda +\lambda c{r}_{{p}_{2}}^{NE}}{\left(2-\lambda \right)\left(\lambda +2\right)\left(1-k\right)}\) and \({q}_{2}^{NE*}=\frac{2a-2c-2ak-a\lambda +\lambda c-2c{r}_{{p}_{2}}^{NE}+ak\lambda }{\left(2-\lambda \right)\left(\lambda +2\right)\left(1-k\right)}\). Substituting \({q}_{1}^{NE*}\) and \({q}_{2}^{NE*}\) into Eq. (6), we have \({r}_{{e}_{2}}^{NE*}=\) \(\frac{{\left(2-\lambda \right)}^{2}(2c-2a+4ak-a\lambda +\lambda c-2a{k}^{2}+ak\lambda +k\lambda c)}{2c\left(4k+k{\lambda }^{2}+2{\lambda }^{2}-8\right)}\) and \(\frac{{\partial }^{2}{\pi }_{E}^{NE}({r}_{{p}_{2}}^{NE})}{\partial {({r}_{{p}_{2}}^{NE})}^{2}}=\frac{2{w}^{2}\left(4k+k{\lambda }^{2}+ 2{\lambda }^{2}-8\right)}{{\left(2-\lambda \right)}^{2}{\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}}<0\). Note that if \(c\ge \frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({r}_{{e}_{2}}^{NE*}\le 0\); if \(c<\frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({r}_{{e}_{2}}^{NE*}>0\). Therefore, if \(c\ge \frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({r}_{{e}_{2}}^{NE*}=0\); if \(c<\frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({r}_{{e}_{2}}^{NE*}=\frac{{\left(2-\lambda \right)}^{2}(2c-2a+4ak-a\lambda +\lambda c-2a{k}^{2}+ak\lambda +k\lambda c)}{2c\left(4k+k{\lambda }^{2}+2{\lambda }^{2}-8\right)}\). Substituting \({r}_{{e}_{2}}^{NE*}\) into \({q}_{1}^{NE*}\) and \({q}_{2}^{NE*}\), we obtain optimal production quantities.\(\square\)
Proof of Proposition 1
-
(i)
\(\frac{\partial {r}_{{b}_{2}}^{NB*}}{\partial k}=\frac{a\left(\lambda -2\right)}{4c}<0\), \(\frac{\partial {q}_{1}^{NB*}}{\partial k}=-\frac{c\left(\lambda +4\right)}{4{\left(k-1\right)}^{2}\left(\lambda +2\right)}<0\) and \(\frac{\partial {q}_{2}^{NB*}}{\partial k}=-\frac{c}{2{\left(k-1\right)}^{2}\left(\lambda +2\right)}<0\);
-
(ii)
If \(c<\frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \(\frac{\partial {r}_{{e}_{2}}^{NE*}}{\partial k}=-\frac{{\left(\lambda -2\right)}^{2}\left(\begin{array}{c}24a-32ak+4a\lambda +12c\lambda +8a{k}^{2}-10a{\lambda }^{2}\\ -3a{\lambda }^{3}+2c{\lambda }^{2}-c{\lambda }^{3}+2a{k}^{2}{\lambda }^{2}+8ak{\lambda }^{2}+8c\end{array}\right)}{2c{\left(4k+k{\lambda }^{2}+2{\lambda }^{2}-8\right)}^{2}}<0\), \(\frac{\partial {q}_{1}^{NE*}}{\partial k}=-\frac{\begin{array}{c}64c+8a\lambda -64ck-8c\lambda -12a{\lambda }^{2}+2a{\lambda }^{3}+a{\lambda }^{4}+16{ck}^{2}-20c{\lambda }^{2}-2c{\lambda }^{3}+3c{\lambda }^{4} \\ -12{ak}^{2}{\lambda }^{2}+2{ak}^{2}{\lambda }^{3}+{ak}^{2}{\lambda }^{4}+8{ck}^{2}{\lambda }^{2}-2{ck}^{2}{\lambda }^{3}+{ck}^{2}{\lambda }^{4}-16ak\lambda +16ck\lambda \\ +24ak{\lambda }^{2}+8{ak}^{2}\lambda -4ak{\lambda }^{3}-2ak{\lambda }^{4}-8ck{\lambda }^{2}-8{ck}^{2}\lambda +4ck{\lambda }^{3}+2ck{\lambda }^{4}\end{array}}{2{\left(k-1\right)}^{2}{\left(4k+k{\lambda }^{2}+2{\lambda }^{2}-8\right)}^{2}}<0\) and \(\frac{\partial {q}_{2}^{NE*}}{\partial k}=\frac{\begin{array}{c}8a-16ak-12a\lambda +16ck+12c\lambda +8a{k}^{2}+2a{\lambda }^{2}+a{\lambda }^{3}-8c{k}^{2}-2c{\lambda }^{2}-c{\lambda }^{3}+2a{k}^{2}{\lambda }^{2}\\ +a{k}^{2}{\lambda }^{3}-2c{k}^{2}{\lambda }^{2}+24ak\lambda -8ck\lambda -4ak{\lambda }^{2}-12a{k}^{2}\lambda -2ak{\lambda }^{3}+4ck{\lambda }^{2}-2ck{\lambda }^{3}-8c\end{array}}{{\left(k-1\right)}^{2}{\left(4k+k{\lambda }^{2}+2{\lambda }^{2}-8\right)}^{2}}<0.\)
If \(c\ge \frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \(\frac{\partial {r}_{{e}_{2}}^{NE*}}{\partial k}=0\) and \(\frac{\partial {q}_{1}^{NE*}}{\partial k}=\frac{\partial {q}_{2}^{NE*}}{\partial k}=-\frac{c}{{\left(k - 1\right)}^{2}\left(\lambda +2\right)}<0\).\(\square\)
Proof of Proposition 2
First, if \(c\ge \frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({r}_{{b}_{2}}^{NB*}-{r}_{{e}_{2}}^{NE*}=\frac{\left(2-\lambda \right)\left[a\left(1-k\right)-c\right]}{4w}>0\); if \(c<\) \(\frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({r}_{{b}_{2}}^{NB*}-{r}_{{e}_{2}}^{NE*}=-\frac{k\left(2-\lambda \right)\left(4a+4c-4ak-4a\lambda +4\lambda c-a{\lambda }^{2}-{\lambda }^{2}c+4ak\lambda +ak{\lambda }^{2}\right)}{4c\left(4k+k{\lambda }^{2}+2{\lambda }^{2}-8\right)}\) \(>0\). Therefore, \({r}_{{e}_{2}}^{NE*}<{r}_{{b}_{2}}^{NB*}\).
Second, if \(c\ge \frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({q}_{1}^{NB*}-{q}_{1}^{NE*}=\frac{\lambda \left[a\left(1-k\right)-c\right]}{4\left(1-k\right)\left(\lambda +2\right)}>0\); if \(c<\) \(\frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({q}_{1}^{NB*}-{q}_{1}^{NE*}=\frac{k\lambda \left(4a+4c-4ak-4a\lambda +4\lambda c-a{\lambda }^{2}-{\lambda }^{2}c+4ak\lambda +ak{\lambda }^{2}\right)}{4\left(\lambda +2\right)\left(k-1\right)\left(4k+k{\lambda }^{2}+2{\lambda }^{2}-8\right)}>0\). Therefore, \({q}_{1}^{NB*}>{q}_{1}^{NE*}\).
Third, if \(c\ge \frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({q}_{2}^{NB*}-{q}_{2}^{NE*}=-\frac{a\left(1-k\right)-c}{2\left(1-k\right)\left(\lambda +2\right)}<0\); if \(c<\) \(\frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({q}_{2}^{NB*}-{q}_{2}^{NE*}=\frac{k\left(4a+4c-4ak-4a\lambda +4\lambda c-a{\lambda }^{2}-{\lambda }^{2}c+4ak\lambda +ak{\lambda }^{2}\right)}{2\left(\lambda +2\right)\left(1-k\right)\left(4k+k{\lambda }^{2}+2{\lambda }^{2}-8\right)}<0\). Therefore, \({q}_{2}^{NB*}<{q}_{2}^{NE*}\).\(\square\)
Proof of Proposition 3
If \(c\ge \frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({\pi }_{{S}_{2}}^{NE*}-{\pi }_{{S}_{2}}^{NB*}=\frac{3{\left[a\left(1-k\right)-c\right]}^{2}}{{4\left(1-k\right)\left(\lambda +2\right)}^{2}}>0\) and \({\pi }_{{S}_{1}}^{NE*}-{\pi }_{{S}_{1}}^{NB*}=-\frac{\lambda {\left[a\left(1-k\right)-c\right]}^{2}\left(\lambda +8\right)}{{16\left(1-k\right)\left(\lambda +2\right)}^{2}}<0\); if \(c<\frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({\pi }_{{S}_{2}}^{NE*}-{\pi }_{{S}_{2}}^{NB*}>0\) and \({\pi }_{{S}_{1}}^{NE*}-\) \({\pi }_{{S}_{1}}^{NB*}<0\). Therefore, \({\pi }_{{S}_{2}}^{NE*}>{\pi }_{{S}_{2}}^{NB*}\) and \({\pi }_{{S}_{1}}^{NE*}<{\pi }_{{S}_{1}}^{NB*}\).\(\square\)
Proof of Proposition 4
-
(i)
(i) \({\pi }_{{S}_{1}}^{NB*}-{\pi }_{{S}_{1}}^{NN*}=\frac{\lambda {\left(c-a+ak\right)}^{2}\left(\lambda +8\right)}{16{\left(\lambda +2\right)}^{2}\left(1-k\right)}>0\) and \({\pi }_{{S}_{2}}^{NB*}-{\pi }_{{S}_{2}}^{NN*}=\) \(\frac{3{\left(c-a+ak\right)}^{2}}{4\left(\mathrm{k}-1\right){\left(\lambda +2\right)}^{2}}<0\).
-
(ii)
(ii) If \(c<\frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({\pi }_{{S}_{1}}^{NN*}-{\pi }_{{S}_{1}}^{NE*}=\frac{\lambda \left(2-\lambda \right)\left(\begin{array}{c}2a-2c-4ak+a\lambda -c\lambda \\ +2a{k}^{2}-ak\lambda -ck\lambda \end{array}\right)\left(\begin{array}{c}32a-32c-48ak+4a\lambda +16ck-4c\lambda +16a{k}^{2}\\ -8a{\lambda }^{2}-a{\lambda }^{3}+8c{\lambda }^{2}+c{\lambda }^{3}+2a{k}^{2}{\lambda }^{2}-8ak\lambda +\\ 6ak{\lambda }^{2}+4a{k}^{2}\lambda +ak{\lambda }^{3}+2ck{\lambda }^{2}+ck{\lambda }^{3}\end{array}\right)}{4{\left(\lambda +2\right)}^{2}\left(k-1\right){\left(4k+k{\lambda }^{2}+2{\lambda }^{2}-8\right)}^{2}}<0\); \({\pi }_{{S}_{2}}^{NN*}-{\pi }_{{S}_{2}}^{NE*}=\frac{\left(2-\lambda \right)\left(\begin{array}{c}12a-12c-16ak+8ck+4a{k}^{2}-3a{\lambda }^{2}+3c{\lambda }^{2}+\\ 2a{k}^{2}{\lambda }^{2}-2ak\lambda +2ck\lambda +ak{\lambda }^{2}+2a{k}^{2}\lambda +ck{\lambda }^{2}\end{array}\right)\left(\begin{array}{c}2a-2c-4ak+a\lambda -c\lambda \\ +2a{k}^{2}-ak\lambda -ck\lambda \end{array}\right)}{{\left(\lambda +2\right)}^{2}\left(1-k\right){\left(4k+k{\lambda }^{2}+2{\lambda }^{2}-8\right)}^{2}}>0\);
If \(c\ge \frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({\pi }_{{S}_{1}}^{NN*}-{\pi }_{{S}_{1}}^{NE*}={\pi }_{{S}_{2}}^{NN*}-{\pi }_{{S}_{2}}^{NE*}=0\);
Therefore, we have \({\pi }_{{S}_{1}}^{NE*}\ge {\pi }_{{S}_{1}}^{NN*}\) and \({\pi }_{{S}_{2}}^{NE*}\le {\pi }_{{S}_{2}}^{NN*}\). \(\square\)
Proof of Proposition 5
-
(1)
First, \({\pi }_{B}^{NB*}=\frac{\left(2-\lambda \right){\left(c-a+ak\right)}^{2}}{8\left(1-k\right)\left(\lambda +2\right)}>{\pi }_{B}^{NE*}=0\).
Second, if \(c<\frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda \left(1+k\right)+2}\), then \({\pi }_{E}^{NE*}-{\pi }_{E}^{NB*}=\frac{{G}_{1}}{16{\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}\left(4k+k{\lambda }^{2}+2{\lambda }^{2}-8\right)}\) and \({G}_{1}={a}^{2}{k}^{4}{\lambda }^{4}-8{a}^{2}{k}^{4}{\lambda }^{3}-8{a}^{2}{k}^{4}{\lambda }^{2}+32{a}^{2}{k}^{4}\lambda -48{a}^{2}{k}^{4}+16{a}^{2}{k}^{3}{\lambda }^{3}-64{c}^{2}\)
$$-16{a}^{2}{k}^{3}{\lambda }^{2}-64{a}^{2}{k}^{3}\lambda +192{a}^{2}{k}^{3}-7{a}^{2}{k}^{2}{\lambda }^{4}-8{a}^{2}{k}^{2}{\lambda }^{3}+88{a}^{2}{k}^{2}{\lambda }^{2}-4{a}^{2}{\lambda }^{4}+32{a}^{2}{k}^{2}\lambda -304{a}^{2}{k}^{2}+10{a}^{2}k{\lambda }^{4}-96{a}^{2}k{\lambda }^{2}+224{a}^{2}k+32{a}^{2}{\lambda }^{2}-64{a}^{2}-4{c}^{2}{\lambda }^{4}$$$$+6ac{k}^{3}{\lambda }^{4}-48ac{k}^{3}{\lambda }^{2}-32ac{k}^{3}-2ac{k}^{2}{\lambda }^{4}-16ac{k}^{2}{\lambda }^{2}+224ac{k}^{2}+{c}^{2}{k}^{2}{\lambda }^{4}-12ack{\lambda }^{4}+128ack{\lambda }^{2}-320ack+8ac{\lambda }^{4}-64ac{\lambda }^{2}+128ac+8{c}^{2}{k}^{2}{\lambda }^{3}+32{c}^{2}{\lambda }^{2}$$\(-8{c}^{2}{k}^{2}{\lambda }^{2}-32{c}^{2}{k}^{2}\lambda -48{c}^{2}{k}^{2}+2{c}^{2}k{\lambda }^{4}-32{c}^{2}k{\lambda }^{2}+96{c}^{2}k<0\), which implies \({\pi }_{E}^{NE*}>{\pi }_{E}^{NB*}\). If \(c\ge \frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda \left(1+k\right)+2}\), then \({\pi }_{E}^{NE*}-{\pi }_{E}^{NB*}=\frac{k\left(c-a+ak\right)\left(\begin{array}{c}4ak-4a+8a\lambda -8c\lambda -a{\lambda }^{2}\\ +5c{\lambda }^{2}-8ak\lambda +ak{\lambda }^{2}-12c\end{array}\right)}{16{\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}}\) \(>0\). Therefore, \({\pi }_{E}^{NE*}>{\pi }_{E}^{NB*}\).
-
(2)
First, \({\pi }_{B}^{NB*}=\frac{\left(2-\lambda \right){\left(c-a+ak\right)}^{2}}{8\left(1-k\right)\left(\lambda +2\right)}>{\pi }_{B}^{NN*}=0\).
Second, if \(c<\frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({\pi }_{E}^{NE*}-{\pi }_{E}^{NN*}=-\frac{{\left(\lambda -2\right)}^{2}{\left(\begin{array}{c}2a-2c-4ak+a\lambda -c\lambda \\ +2a{k}^{2}-ak\lambda -ck\lambda \end{array}\right)}^{2}}{4{\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}\left(4k+k{\lambda }^{2}+2{\lambda }^{2}-8\right)}\) \(>0\); if \(c\ge \frac{a\left(1-k\right)\left(2+\lambda -2k\right)}{\lambda (1+k)+2}\), then \({\pi }_{E}^{NE*}={\pi }_{E}^{NN*}\). Therefore, \({\pi }_{E}^{NE*}\ge {\pi }_{E}^{NN*}\).
-
(3)
\({\pi }_{E}^{NB*}-{\pi }_{E}^{NN*}=\frac{k\left(a-ak-c\right){G}_{2}}{16{\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}}\), where \({G}_{2}=4ak-12c-4a+8a\lambda -8c\lambda -a{\lambda }^{2}+5c{\lambda }^{2}-8ak\lambda +ak{\lambda }^{2}\). We show that \({G}_{2}\) decreases with \(c\) and \({G}_{2}{|}_{c=(1-k)a}\) \(<0\). Since \({G}_{2}{|}_{c=0}=a\left({\lambda }^{2}-8\lambda +4\right)\left(k-1\right)\), then \({G}_{2}{|}_{c=0}>0\) if \(\lambda >0.5359\), and \({G}_{2}{|}_{c=0}<0\) if \(\lambda <0.5359\). Therefore, when \(\lambda <0.5359\), we have \({G}_{2}<0\) and \({\pi }_{E}^{NB*}<{\pi }_{E}^{NN*}\); when \(\lambda \ge 0.5359\), there exists a unique \({c}_{0}\) such that \({G}_{2}\ge 0\) and \({\pi }_{E}^{NB*}\ge {\pi }_{E}^{NN*}\) if \(c\le {c}_{0}\), and \({G}_{2}<0\) and \({\pi }_{E}^{NB*}<{\pi }_{E}^{NN*}\) if \(c>{c}_{0}\). \(\square\)
Proof of Lemma 3
For Problem (7), it is straightforward that \({\pi }_{{S}_{i}}^{BB}({q}_{i}^{BB})\) is a concave function with respect to \({q}_{i}^{BB}\). According to the first-order condition, the optimal production quantities are \({q}_{i}^{BB}=\frac{2{kq}_{i}^{BB}-2{q}_{i}^{BB}+a-\lambda {q}_{3-i}^{BB}-ka+k\lambda {q}_{3-i}^{BB}}{1+{r}_{{b}_{i}}^{BB}}\). Therefore, we have \({q}_{i}^{BB*}=\frac{\lambda ka-2ka-\lambda a-2c+2a-2c{r}_{{b}_{3-i}}^{BB}+\lambda c+\lambda c{r}_{{b}_{i}}^{BB}}{(\lambda +2)(2-\lambda )(1-k)}\). Substituting \({q}_{i}^{BB*}\) into Problem (8), according to the first-order condition, we have \({r}_{{b}_{1}}^{BB*}={r}_{{b}_{2}}^{BB*}=\frac{\left(1-k\right)a-c}{2c}>0\). Since \(\frac{{\partial }^{2}{\pi }_{B}^{BB}}{\partial {({r}_{{b}_{1}}^{BB})}^{2}}{|}_{{r}_{{b}_{1}}^{BB*}}<0\) and \(\frac{{\partial }^{2}{\pi }_{B}^{BB}}{\partial {({r}_{{b}_{1}}^{BB})}^{2}}\frac{{\partial }^{2}{\pi }_{B}^{BB}}{\partial {({r}_{{b}_{2}}^{BB})}^{2}}-\frac{{\partial }^{2}{\pi }_{B}^{BB}}{\partial {r}_{{b}_{1}}^{BB}\partial {r}_{{b}_{2}}^{BB}}\frac{{\partial }^{2}{\pi }_{B}^{BB}}{\partial {r}_{{b}_{2}}^{BB}\partial {r}_{{b}_{1}}^{BB}}{|}_{({r}_{{b}_{1}}^{BB*}, {r}_{{b}_{2}}^{BB*})}>0\), then \(({r}_{{b}_{1}}^{BB*},{r}_{{b}_{2}}^{BB*})\) is the unique optimal solution. Further, we obtain \({q}_{1}^{BB*}\) and \({q}_{2}^{BB*}\). \(\square\)
Proof of Lemma 4
From Problem (9), we obtain \(\frac{\partial {\pi }_{{S}_{i}}^{EE}}{\partial {q}_{i}^{EE}}=\left(k-1\right)\left(2{q}_{i}^{EE}-a+\lambda {q}_{3-i}^{EE}\right)-c({r}_{{e}_{i}}^{EE}+1)\). According to the first-order condition, we have \({q}_{i}^{EE}=\frac{2{kq}_{i}^{EE}-2{q}_{i}^{EE}+a-\lambda {q}_{3-i}^{EE}-ka+k\lambda {q}_{3-i}^{EE}}{1+{r}_{{e}_{i}}^{EE}}\).
Therefore, \({q}_{i}^{EE*}=\frac{\lambda ka-2ka-\lambda a-2c+2a-2c{r}_{{e}_{3-i}}^{EE}+\lambda c+\lambda c{r}_{{e}_{i}}^{EE}}{(\lambda +2)(2-\lambda )(1-k)}\). Substituting \({q}_{i}^{EE*}\) into Problem (10), then \(\frac{\partial {\pi }_{E}^{EE}}{\partial {r}_{{e}_{i}}^{EE}}=\frac{c\left(\begin{array}{c}8a-8c-16ak-4a\lambda +4c\lambda -16c{r}_{{e}_{i}}^{EE}+8a{k}^{2}-2a{\lambda }^{2}+a{\lambda }^{3}+2c{\lambda }^{2}-\\ c{\lambda }^{3}+4c{\lambda }^{2}{r}_{{e}_{i}}^{EE}-2c{\lambda }^{3}{r}_{{e}_{3-i}}^{EE}+2a{k}^{2}{\lambda }^{2}+12ak\lambda -4ck\lambda +8ck{r}_{{e}_{i}}^{EE}+\\ 8c\lambda {r}_{{e}_{3-i}}^{EE}-8a{k}^{2}\lambda -ak{\lambda }^{3}+4ck{\lambda }^{2}-ck{\lambda }^{3}-8ck\lambda {r}_{{e}_{3-i}}^{EE}+2ck{\lambda }^{2}{r}_{{e}_{i}}^{EE}\end{array}\right)}{{\left(\lambda -2\right)}^{2}{\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}}\). From the first-order condition, we have \({r}_{{e}_{i}}^{EE*}({r}_{{e}_{3-i}}^{EE})=\frac{\begin{array}{c}8c-8a+16ak+4a\lambda -4c\lambda -8a{k}^{2}+2a{\lambda }^{2}-a{\lambda }^{3}+c{\lambda }^{3}\\ +2c{\lambda }^{3}{r}_{{e}_{3-i}}^{EE}-2a{k}^{2}{\lambda }^{2}-12ak\lambda +4ck\lambda -8c\lambda {r}_{{e}_{3-i}}^{EE}\\ +8a{k}^{2}\lambda +ak{\lambda }^{3}-4ck{\lambda }^{2}+ck{\lambda }^{3}+8ck\lambda {r}_{{e}_{3-i}}^{EE}-2c{\lambda }^{2}\end{array}}{2c\left(4k+k{\lambda }^{2}+2{\lambda }^{2}-8\right)}\). Therefore, we obtain \({r}_{{e}_{1}}^{EE*}={r}_{{e}_{2}}^{EE*}=\frac{2{k}^{2}a-\lambda kc-\lambda ka-4ka+2a-\lambda c+\lambda a-2c}{2c\left(2+\lambda -k\right)}\). Since \(\frac{{\partial }^{2}{\pi }_{E}^{EE}}{\partial {\left({r}_{{e}_{1}}^{EE}\right)}^{2}}{|}_{{r}_{{e}_{1}}^{EE*}}<0\) and \(\frac{{\partial }^{2}{\pi }_{E}^{EE}}{\partial {\left({r}_{{e}_{1}}^{EE}\right)}^{2}}\frac{{\partial }^{2}{\pi }_{E}^{EE}}{\partial {\left({r}_{{e}_{2}}^{EE}\right)}^{2}}-\frac{{\partial }^{2}{\pi }_{E}^{EE}}{\partial {r}_{{e}_{1}}^{EE}\partial {r}_{{e}_{2}}^{EE}}\frac{{\partial }^{2}{\pi }_{E}^{EE}}{\partial {r}_{{e}_{2}}^{EE}\partial {r}_{{e}_{1}}^{EE}}{|}_{\left({r}_{{e}_{1}}^{EE*},{ r}_{{e}_{2}}^{EE*}\right)}>0\), then \(({r}_{{e}_{1}}^{EE*},{ r}_{{e}_{2}}^{EE*})\) is the unique optimal solution.
Let \(y=2{k}^{2}a-\lambda kc-\lambda ka-4ka+2a-\lambda c+\lambda a-2c\), we find that \(y\) decreases with \(c\), \(y{|}_{c=0}=a\left(1-k\right)\left(2+\lambda -2k\right)>0\) and \(y{|}_{c=(1-k)a}=ak\left(\lambda +2\right)\left(k-1\right)<0\). Therefore, there exists a unique \({c}_{1}\) such that \(y\le 0\) if \(c\ge {c}_{1}\), and \(y>0\) if \(c<{c}_{1}\). This implies that \({r}_{{e}_{1}}^{EE*}={r}_{{e}_{2}}^{EE*}=\frac{2{k}^{2}a-\lambda kc-\lambda ka-4ka+2a-\lambda c+\lambda a-2c}{2c\left(2+\lambda -k\right)}\) if \(c<{c}_{1}\), and \({r}_{{e}_{1}}^{EE*}={r}_{{e}_{2}}^{EE*}=0\) if \(c\ge {c}_{1}\). Furthermore, we obtain \({q}_{1}^{EE*}\) and \({q}_{2}^{EE*}\). \(\square\)
Proof of Lemma 5
Proof of Lemma 5 is similar to that of Lemma 2, and hence is omitted.\(\square\)
Proof of Proposition 6
Proof of Proposition 6 is similar to that of Proposition 1, and hence is omitted. \(\square\)
Proof of Proposition 7
For Part (i),
(1) If \(0\le c<{c}_{1}\), then \({r}_{{b}_{1}}^{BB*}-{r}_{{e}_{1}}^{EB*}=\frac{{z}_{1}}{2c\left(k{\lambda }^{4}-4k{\lambda }^{2}-32k-20{\lambda }^{2}+{\lambda }^{4}+64\right)}\), where \({z}_{1}=\) \(32ak+16a\lambda +32ck-16c\lambda -32{ak}^{2}+4a{\lambda }^{2}-4a{\lambda }^{3}-a{\lambda }^{4}-4c{\lambda }^{2}+4c{\lambda }^{3}+c{\lambda }^{4}-4a{k}^{2}{\lambda }^{2}-4a{k}^{2}{\lambda }^{3}+a{k}^{2}{\lambda }^{4}-64ak\lambda +16ck\lambda +48a{k}^{2}\lambda +8ak{\lambda }^{3}+ck{\lambda }^{4}-20ck{\lambda }^{2}+ 4ck{\lambda }^{3}\). Since \({z}_{1}\) is a monotone function with respect to \(c\), \({z}_{1}{|}_{c=0}>0\) and \({z}_{1}{|}_{c={c}_{1}}>0\), we obtain \({z}_{1}>0\) and \({r}_{{b}_{1}}^{BB*}>{r}_{{e}_{1}}^{EB*}\).
, where \({z}_{2}=32a\lambda -64ak-64ck-32c\lambda +96a{k}^{2}-32a{k}^{3}+24a{\lambda }^{2}-4a{\lambda }^{3}-a{\lambda }^{5}-6a{\lambda }^{4}+32c{k}^{2}-24c{\lambda }^{2} +4c{\lambda }^{3}+ 6c{\lambda }^{4}+c{\lambda }^{5}+24a{k}^{2}{\lambda }^{2}+8a{k}^{2}{\lambda }^{3}-16a{k}^{3}{\lambda }^{2}-4a{k}^{2}{\lambda }^{4}-a{k}^{2}{\lambda }^{5}+2a{k}^ {3}{\lambda }^{4}+8c{k}^{2}{\lambda }^{3}-2c{k}^{2}{\lambda }^{4}-c{k}^{2}{\lambda }^{5}-48ak\lambda -16ck\lambda -32ak{\lambda }^{2}+16a{k}^{2}\lambda -4ak{\lambda }^{3}+8ak{\lambda }^{4}+2ak{\lambda }^{5}+48ck{\lambda }^{2}+16c{k}^{2}\lambda +12ck{\lambda }^{3}-4ck{\lambda }^{4}\). We observe that \({z}_{2}\) decreases with \(c\), \({z}_{2}{|}_{c={c}_{1}}<0\) and \({z}_{2}{|}_{c=0}=a\left(k-1\right){z}_{3}\), where \({z}_{3}=2{k}^{2}{\lambda }^{4}-16{k}^{2}{\lambda }^{2}-32{k}^{2}-k{\lambda }^{5}-2k{\lambda }^{4}-32\lambda +8k{\lambda }^{3}+8k{\lambda }^{2}+16k\lambda +64k+{\lambda }^{5}+6{\lambda }^{4}+4{\lambda }^{3}-24{\lambda }^{2}\). Since \({z}_{3}\) increases with \(k\), \({z}_{3}{|}_{k=0}\) \(<0\) and \({z}_{3}{|}_{k=1}>0\), then there exists a unique \({k}_{0}\) such that \({z}_{3}>0\) and \({z}_{2}{|}_{c=0}<\) \(0\) if \(k>{k}_{0}\), and \({z}_{3}<0\) and \({z}_{2}{|}_{c=0}>0\) if \(k<{k}_{0}\).
Therefore, when \(k>{k}_{0}\), we have \({z}_{2}{|}_{c={c}_{1}}<0\) and \({z}_{2}{|}_{c=0}<0\), i.e., \({r}_{{b}_{1}}^{BE*}>{r}_{{e}_{1}}^{EE*}\); when \(k<{k}_{0}\), we have \({z}_{2}{|}_{c=0}>0\) and \({z}_{2}{|}_{c={c}_{1}}<0\). There exists a unique \({\overline{c}}_{12}\) such that \({r}_{{b}_{1}}^{BE*}>{r}_{{e}_{1}}^{EE*}\) if \(c>{\overline{c}}_{12}\), and \({r}_{{b}_{1}}^{BE*}\le {r}_{{e}_{1}}^{EE*}\) if \(c\le {\overline{c}}_{12}\).
(2) If \({c}_{1}\le c<{c}_{2}\), then \({r}_{{b}_{1}}^{BB*}-{r}_{{e}_{1}}^{EB*}=\frac{{z}_{1}}{2c\left(k{\lambda }^{4}-4k{\lambda }^{2}-32k-20{\lambda }^{2}+{\lambda }^{4}+64\right)}>0\) and \({r}_{{b}_{1}}^{BE*}\) \(-{r}_{{e}_{1}}^{EE*}=\frac{\left(2-\lambda \right)\left(2+\lambda \right)\left(\begin{array}{c}8a-8c+{\lambda }^{2}c-a{\lambda }^{2}+k{\lambda }^{2}c+a{\lambda }^{2}k-2\lambda kc\\ -2\lambda a+2\lambda ka+2\lambda c-12ka+4{k}^{2}a+4kc\end{array}\right)}{c\left({\lambda }^{4}+{\lambda }^{4}k-20{\lambda }^{2}-4k{\lambda }^{2}-32k+64\right)}>0\);
(3) If \({c}_{2}\le c<{c}_{3}\), then \({r}_{{b}_{1}}^{BB*}-{r}_{{e}_{1}}^{EB*}=\frac{\left(1-k\right)a-c}{2c}>0\) and \({r}_{{b}_{1}}^{BE*}-{r}_{{e}_{1}}^{EE*}=\frac{\left(2-\lambda \right)\left[\left(1-k\right)a-c\right]}{4c}>0\);
(4) If \(c\ge {c}_{3}\), then \({r}_{{b}_{1}}^{BB*}-{r}_{{e}_{1}}^{EB*}=\frac{\left(1-k\right)a-c}{2c}>0\) and \({r}_{{b}_{1}}^{BE*}-{r}_{{e}_{1}}^{EE*}=0\).
Similar to the proof of Part (i), we easily obtain Part (ii), Part (iii) and Part (iv). \(\square\)
Proof of Proposition 8
From seller 1’s perspective,
-
(1)
\(0\le c<{c}_{1}\)
If seller 2 adopts bank credit, then \({\pi }_{{S}_{1}}^{EB*}-{\pi }_{{S}_{1}}^{BB*}=\frac{{F}_{1}{F}_{2}}{4{\left(\lambda +2\right)}^{2}\left(1-k\right){\left(\begin{array}{c}{\lambda }^{4}+{\lambda }^{4}k-20{\lambda }^{2}\\ -4k{\lambda }^{2}-32k+64\end{array}\right)}^{2}}\), where \({F}_{1}=128c-128a+160ak-16a\lambda -96kc+16\lambda c-32a{k}^{2}+36a{\lambda }^{2}+4a{\lambda }^{3}-a{\lambda }^{4}-36{\lambda }^{2}c-4{\lambda }^{3}c+{\lambda }^{4}c+4k{\lambda }^{2}c+4k{\lambda }^{3}c+k{\lambda }^{4}c-20a{k}^{2}{\lambda }^{2}-8ak{\lambda }^{3}+4a{k}^{2}{\lambda }^{3}+3a{k}^{2}{\lambda }^{4}+48ak\lambda -32k\lambda c-16ak{\lambda }^{2}-32a{k}^{2}\lambda -2ak{\lambda }^{4}<0\), \({F}_{2}=16\lambda c-16a\lambda -32kc-32ak+32a{k}^{2}-4a{\lambda }^{2}+4a{\lambda }^{3}+a{\lambda }^{4}+4{\lambda }^{2}c-4{\lambda }^{3}c-{\lambda }^{4}c+12k{\lambda }^{2}c+4k{\lambda }^{3}c-k{\lambda }^{4}c-12a{k}^{2}{\lambda }^{2}+4a{k}^{2}{\lambda }^{3}+a{k}^{2}{\lambda }^{4}+48ak\lambda -32k\lambda c+16ak{\lambda }^{2}-32a{k}^{2}\lambda -8ak{\lambda }^{3}-2ak{\lambda }^{4}<0\). Therefore, \({\pi }_{{S}_{1}}^{EB*}>{\pi }_{{S}_{1}}^{BB*}.\)
If seller 2 adopts e-commerce platform financing, then we have \({\pi }_{{S}_{1}}^{EE*}-{\pi }_{{S}_{1}}^{BE*}=\) \(\frac{{F}_{3}{F}_{4}}{4\left(k-1\right){\left(\lambda -k+2\right)}^{2} {\left({\lambda }^{4}+{\lambda }^{4}k-20{\lambda }^{2}-4k{\lambda }^{2}-32k+64\right)}^{2}}\), where \({F}_{3}=128c-128a+224ak-16a\lambda -160kc+16\lambda c-112a{k}^{2}+16a{k}^{3}+36a{\lambda }^{2}+4a{\lambda }^{3}-a{\lambda }^{4}+48{k}^{2}c+{\lambda }^{4}c-36{\lambda }^{2}c-4{\lambda }^{3}c+20k{\lambda }^{2}c-8{k}^{2}\lambda c-4k{\lambda }^{3}c+a{k}^{2}{\lambda }^{4}+8{k}^{2}{\lambda }^{2}c-{k}^{2}{\lambda }^{4}c+24ak\lambda +8k\lambda c-36ak{\lambda }^{2}-8a{k}^{2}\lambda -4ak{\lambda }^{3}<0\) and \({F}_{4}=32ak-16a\lambda +32kc+16\lambda c-48a{k}^{2}+16a{k}^{3}-4a{\lambda }^{2}+4a{\lambda }^{3}+a{\lambda }^{4}-16{k}^{2}c+4{\lambda }^{2}c-4{\lambda }^{3}c-{\lambda }^{4}c-12k{\lambda }^{2}c-8{k}^{2}\lambda c-4k{\lambda }^{3}c+8a{k}^{2}{\lambda }^{2}-a{k}^{2}{\lambda }^{4}+{k}^{2}{\lambda }^{4}c+24ak\lambda +8k\lambda c-4ak{\lambda }^{2}-8a{k}^{2}\lambda -4ak{\lambda }^{3}\). We observe that \({F}_{4}\) increases with \(c\), \({F}_{4}{|}_{c={c}_{1}}>0\) and \({F}_{4}{|}_{c=0}=a(k-1){y}_{2}\), where \({y}_{2}=16{k}^{2}-{\lambda }^{4}k+8k{\lambda }^{2}-8\lambda k-32k+4{\lambda }^{2}-4{\lambda }^{3}-{\lambda }^{4}+16\lambda\), \({y}_{2}\) decreases with \(k\), \({y}_{2}{|}_{k=0}=-{\lambda }^{4}+4{\lambda }^{2}-4{\lambda }^{3}+16\lambda >0\) and \({y}_{2}{|}_{k=1}=2\left({\lambda }^{2}+2\lambda -4\right)\left(2-{\lambda }^{2}\right)<0\). Hence, there exists a unique \({k}_{2}\) such that \({y}_{2}{|}_{k=0}>0\) and \({F}_{4}{|}_{c=0}<0\) if \(k<{k}_{2}\), and \({y}_{2}{|}_{k=0}\le 0\) and \({F}_{4}{|}_{c=0}\ge 0\) if \(k\ge {k}_{2}\), where \({k}_{2}\) holds \(16{k}^{2}-{\lambda }^{4}k+8k{\lambda }^{2}-{\lambda }^{4}\) \(-8\lambda k-32k+4{\lambda }^{2}-4{\lambda }^{3}+16\lambda =0\).
To sum up, when \(k\ge {k}_{2}\), then \({F}_{4}\ge 0\) and \({\pi }_{{S}_{1}}^{EE*}\ge {\pi }_{{S}_{1}}^{BE*}\); when \(k<{k}_{2}\), there exists a unique \({\overline{c}}_{1}\in (0,{c}_{1})\) such that \({F}_{4}<0\) and \({\pi }_{{S}_{1}}^{EE*}<{\pi }_{{S}_{1}}^{BE*}\) if \(c<{\overline{c}}_{1}\), and \({F}_{4}\ge 0\) and \({\pi }_{{S}_{1}}^{EE*}\ge {\pi }_{{S}_{1}}^{BE*}\) if \(c\ge {\overline{c}}_{1}\)
-
(2)
\({c}_{1}\le c<{c}_{2}.\)
If seller 2 adopts bank credit, then \({\pi }_{{S}_{1}}^{EB*}-{\pi }_{{S}_{1}}^{BB*}=\frac{{F}_{1}{F}_{2}}{4{\left(\lambda +2\right)}^{2}\left(1-k\right){\left(\begin{array}{c}{\lambda }^{4}+{\lambda }^{4}k-20{\lambda }^{2}\\ -4k{\lambda }^{2}-32k+64\end{array}\right)}^{2}}\), \(>0\). If seller 2 adopts e-commerce platform financing, then \({\pi }_{{S}_{1}}^{EE*}-{\pi }_{{S}_{1}}^{BE*}=\frac{(2-\lambda ){F}_{5}{F}_{6}}{{\left(\lambda +2\right)}^{2}\left(1-k\right){\left({\lambda }^{4}+{\lambda }^{4}k-20{\lambda }^{2}-4k{\lambda }^{2}-32k+64\right)}^{2}}\), where \({F}_{5}=16a-16c-24ak+4a\lambda +8kc\) \(-4\lambda c+8a{k}^{2}-4a{\lambda }^{2}-a{\lambda }^{3}+4{\lambda }^{2}c+{\lambda }^{3}c+4k{\lambda }^{2}c+k{\lambda }^{3}c+2a{k}^{2}{\lambda }^{2}+a{k}^{2}{\lambda }^{3}-\) \(4ak\lambda +4k\lambda c+2ak{\lambda }^{2}>0\) and \({F}_{6}=96a-96c-144ak+8a\lambda +48kc-8\lambda c+48a{k}^{2}-28a{\lambda }^{2}-2a{\lambda }^{3}+a{\lambda }^{4}+28{\lambda }^{2}c+2{\lambda }^{3}c-{\lambda }^{4}c+4k{\lambda }^{2}c+2k{\lambda }^{3}c-k{\lambda }^{4}c+4a{k}^{2}{\lambda }^{2}-a{k}^{2}{\lambda }^{4}-16ak\lambda +24ak{\lambda }^{2}+8a{k}^{2}\lambda +2ak{\lambda }^{3}>0\). Hence, \({\pi }_{{S}_{1}}^{EE*}>{\pi }_{{S}_{1}}^{BE*}\). We conclude that seller 1 always prefers e-commerce platform financing.
-
(3)
\({c}_{2}\le c<{c}_{3}\)
If seller 2 adopts bank credit, then \({\pi }_{{S}_{1}}^{EB*}-{\pi }_{{S}_{1}}^{BB*}=\frac{{[\left(1-k\right)a-c]}^{2}\left(\lambda +6\right)}{16\left(\lambda +2\right)\left(1-k\right)}>0\); if seller 2 adopts e-commerce platform financing, then \({\pi }_{{S}_{1}}^{EE*}-{\pi }_{{S}_{1}}^{BE*}=\frac{{3\left[\left(1-k\right)a-c\right]}^{2}}{4{\left(\lambda +2\right)}^{2}\left(1-k\right)}>0\). Therefore, seller 1 prefers e-commerce platform financing.
-
(4)
\(c\ge {c}_{3}\)
If seller 2 adopts bank credit, then \({\pi }_{{S}_{1}}^{EB*}-{\pi }_{{S}_{1}}^{BB*}=\frac{{\left(\lambda +1\right)\left(\lambda +3\right)\left[\left(1-k\right)a-c\right]}^{2}}{4{\left(\lambda +2\right)}^{2}\left(1-k\right)}>0\); if seller 2 adopts e-commerce platform financing, we have \({\pi }_{{S}_{1}}^{EE*}-{\pi }_{{S}_{1}}^{BE*}=\frac{{[\left(1-k\right)a-c]}^{2}}{{\left(\lambda +2\right)}^{2}\left(1-k\right)}\) \(>0\). Therefore, it is optimal for seller 1 to adopt e-commerce platform financing.\(\square\)
Proof of Proposition 9
-
(i)
First, if \(c<{c}_{2}\), then \({\pi }_{E}^{BB*}-{\pi }_{E}^{BE*}={M}_{1}-{M}_{5}<0\); if \({c}_{2}\le c<{c}_{3}\), then \({\pi }_{E}^{BB*}\) \(-{\pi }_{E}^{BE*}=\frac{k\left(c-a+ak\right)\left(2a+6c-2ak-a\lambda +5c\lambda +ak\lambda \right)}{16{\left(k-1\right)}^{2}\left(\lambda +2\right)}<0\); if \(c\ge {c}_{3}\), then \({\pi }_{E}^{BB*}-{\pi }_{E}^{BE*}=\) \(\frac{a\lambda \left(k-1\right)\left(20k-8\lambda +2k\lambda +k{\lambda }^{3}+8{\lambda }^{2}+2{\lambda }^{3}-32\right)}{4k+2\lambda -2k\lambda +k{\lambda }^{2}+{\lambda }^{2}-8}<0\). Therefore, \({\pi }_{E}^{BB*}<{\pi }_{E}^{BE*}\).
Second, if \(c<{c}_{1}\), then \({\pi }_{E}^{BB*}-{\pi }_{E}^{EE*}=\frac{k\left(3ak-c-3a-a\lambda -c\lambda +ak\lambda \right)\left(c-a+ak\right)}{2{\left(k-1\right)}^{2}{\left(\lambda +2\right)}^{2}}-\frac{{\left(a-c\right)}^{2}}{2\left(2+\lambda -k\right)}\) \(<0\); if \(c\ge {c}_{1}\), then \({\pi }_{E}^{BB*}-{\pi }_{E}^{EE*}=\) \(\frac{k\left(c-a+ak\right)\left(a+3c-ak-a\lambda +3c\lambda +ak\lambda \right)}{2{\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}}<0\). Therefore, \({\pi }_{E}^{BB*}<{\pi }_{E}^{EE*}\).
-
(ii)
If \(c<{c}_{1}\), then \({\pi }_{E}^{EB*}-{\pi }_{E}^{EE*}={M}_{5}-\frac{{\left(a-c\right)}^{2}}{2\left(2+\lambda -k\right)}<0\);
If \({c}_{1}\le c<{c}_{2}\), then \({\pi }_{E}^{EB*}-{\pi }_{E}^{EE*}=\frac{\left(2-\lambda \right){T}_{1}}{{\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}{\left(32k+4k{\lambda }^{2}-k{\lambda }^{4}+20{\lambda }^{2}-{\lambda }^{4}-64\right)}^{2}}\), where \({T}_{1}=\frac{[{M}_{5}{\left(k-1\right)}^{2}{\left(\lambda +2\right)}^{2}-2k\left(ak-c-a-c\lambda \right)\left(c-a+ak\right)]{\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}{\left(32k+4k{\lambda }^{2}-k{\lambda }^{4}+20{\lambda }^{2}-{\lambda }^{4}-64\right)}^{2} }{\left(2-\lambda \right){\left(k-1\right)}^{2}{\left(\lambda +2\right)}^{2}}\) and is a monotone function with respect to \(c\).
When \(c={c}_{1}\), we have \({T}_{1}<0\);
When \(c={c}_{2}\), we have \({T}_{1}=\frac{{a}^{2}{k}^{2}\left(2-\lambda \right){\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}{\left(k{\lambda }^{4}-4k{\lambda }^{2}-32k-20{\lambda }^{2}+{\lambda }^{4}+64\right)}^{2}}{{\left(4k{\lambda }^{2}-4k\lambda -4\lambda +k{\lambda }^{3}+4{\lambda }^{2}+{\lambda }^{3}-16\right)}^{2}}{T}_{2}\), where \({T}_{2}=12k-4\lambda +4k\lambda -k{\lambda }^{2}+k{\lambda }^{3}+4{\lambda }^{2}+{\lambda }^{3}-16\) increases with \(k\), \({T}_{2}{|}_{k=0}<0\) and \({T}_{2}{|}_{k=1}=2{\lambda }^{3}+3{\lambda }^{2}-4\). We show that if \(\lambda >0.911\), then \({T}_{2}{|}_{k=1}>0\); if \(\lambda \le 0.911\), then \({T}_{2}{|}_{k=1}<0\). Therefore, when \(\lambda \le 0.911\), we have \({T}_{2}<0\); when \(\lambda >0.911\), we have \({T}_{2}{|}_{k=0}<0\) and \({T}_{2}{|}_{k=1}>0\), then there exists a unique \({k}_{22}=\frac{- {\lambda }^{3}-4{\lambda }^{2}+4\lambda +16}{{\lambda }^{3}-{\lambda }^{2}+4\lambda +12}\) such that if \(k<{k}_{22}\), then \({T}_{2}<0\); if \(k\ge {k}_{22}\), then \({T}_{2}\ge 0\).
We conclude that: (1) when \(\lambda \le 0.911\), we have \({T}_{1}\le 0\) and \({\pi }_{E}^{EB*}\le {\pi }_{E}^{EE*}\); (2) when \(\lambda >0.911\) and \(k<{k}_{22}\), we have \({T}_{1}\le 0\) and \({\pi }_{E}^{EB*}\le {\pi }_{E}^{EE*}\); (3) when \(\lambda >0.911\) and \(k\ge {k}_{22}\), there exists a unique \({c}_{11}\in [{c}_{1},{c}_{2})\) such that if \(c<{c}_{11}\), then \({T}_{1}>0\) and \({\pi }_{E}^{EB*}>{\pi }_{E}^{EE*}\); if \(c\ge {c}_{11}\), then \({T}_{1}\le 0\) and \({\pi }_{E}^{EB*}\le {\pi }_{E}^{EE*}\).
If \({c}_{2}\le c<{c}_{3}\), then \({\pi }_{E}^{EB*}-{\pi }_{E}^{EE*}=\frac{k\left(a-ak-c\right)}{16{\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}}{T}_{3}\), where \({T}_{3}=4ak-12c-4a\) \(+8a\lambda -8c\lambda -a{\lambda }^{2}+5c{\lambda }^{2}-8ak\lambda +ak{\lambda }^{2}\). We show that \({T}_{3}\) decreases with \(c\), \({T}_{3}{|}_{c={c}_{3}}<0\) and \({T}_{3}{|}_{c={c}_{2}}=\frac{4a\left(2-\lambda \right)\left(\lambda +2\right)\left(1-k\right)}{4\lambda +4k\lambda -4k{\lambda }^{2}-k{\lambda }^{3}-4{\lambda }^{2}-{\lambda }^{3}+16}{T}_{2}\). Hence, when \(\lambda \le 0.911\), we have \({T}_{3}\le 0\) and \({\pi }_{E}^{EB*}\le {\pi }_{E}^{EE*}\); (2) when \(\lambda >0.911\) and \(k<{k}_{22}\), we have \({T}_{3}\le 0\) and \({\pi }_{E}^{EB*}\le {\pi }_{E}^{EE*}\); (3) when \(\lambda >0.911\) and \(k\ge {k}_{22}\), there exists a unique \({c}_{22}\in [{c}_{2},{c}_{3})\) such that if \(c<{c}_{22}\), then \({T}_{3}>0\) and \({\pi }_{E}^{EB*}>{\pi }_{E}^{EE*}\); if \(c\ge {c}_{22}\), then \({T}_{3}\le 0\) and \({\pi }_{E}^{EB*}\le {\pi }_{E}^{EE*}\).
If \(c\ge {c}_{3}\), then \({\pi }_{E}^{EE*}-{\pi }_{E}^{EB*}=\frac{k\left(a-ak-c\right)\left(4a+4c-4ak-4a\lambda +4c\lambda -a{\lambda }^{2}-c{\lambda }^{2}+4ak\lambda +ak{\lambda }^{2}\right)}{4{\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}}>0\).
To sum up, if \(\lambda >0.911\), \(k\ge {k}_{22}\) and \(c\in ({c}_{1},{c}_{11})\cup ({c}_{2},{c}_{22})\), then \({\pi }_{E}^{EE*}<{\pi }_{E}^{EB*}\); otherwise, \({\pi }_{E}^{EE*}\ge {\pi }_{E}^{EB*}\).
-
(iii)
First, if \(c<{c}_{2}\), then \({\pi }_{B}^{BB*}-{\pi }_{B}^{BE*}=\frac{{[\left(1-k\right)a-c]}^{2}}{2\left(1-k\right)\left(\lambda +2\right)}-{M}_{4}>0\); if \({c}_{2}\le c<{c}_{3}\), then \({\pi }_{B}^{BB*}-{\pi }_{B}^{BE*}=\frac{{\left[\left(1-k\right)a-c\right]}^{2}}{8\left(1-k\right)}>0\); if \(c\ge {c}_{3}\), then \({\pi }_{B}^{BB*}-{\pi }_{B}^{BE*}=\frac{{\left[\left(1-k\right)a-c\right]}^{2}}{2\left(1-k\right)\left(\lambda +2\right)}>0\). Therefore, \({\pi }_{B}^{BB*}>{\pi }_{B}^{BE*}\).
Second, since \({\pi }_{B}^{EE*}\) is always equal to 0, then we easily have \({\pi }_{B}^{BB*}>{\pi }_{B}^{BE*}>{\pi }_{B}^{EE*}\).\(=0.\square\)
Proof of Proposition 10
-
(i)
\({\pi }_{{S}_{1}}^{NN*}-{\pi }_{{S}_{1}}^{BB*}={\pi }_{{S}_{2}}^{NN*}-{\pi }_{{S}_{2}}^{BB*}=\frac{3{\left(c-a+ak\right)}^{2}}{4\left(1-k\right){\left(\lambda +2\right)}^{2}}>0\);
If \(c<{c}_{1}\), then \({\pi }_{{S}_{1}}^{NN*}-{\pi }_{{S}_{1}}^{EE*}={\pi }_{{S}_{2}}^{NN*}-{\pi }_{{S}_{2}}^{EE*}=\frac{\left(\begin{array}{c}6a-6c-8ak+3a\lambda +4ck\\ -3c\lambda +2a{k}^{2}-3ak\lambda +ck\lambda \end{array}\right)\left(\begin{array}{c}2a-2c-4ak+a\lambda -c\lambda \\ +2a{k}^{2}-ak\lambda -ck\lambda \end{array}\right)}{4{\left(\lambda +2\right)}^{2}\left(1-k\right){\left(\lambda -k+2\right)}^{2}}>0\);
If \(c\ge {c}_{1}\), then \({\pi }_{{S}_{1}}^{NN*}-{\pi }_{{S}_{1}}^{EE*}={\pi }_{{S}_{2}}^{NN*}-{\pi }_{{S}_{2}}^{EE*}=0\).
Therefore, \({\pi }_{{S}_{1}}^{NN*}-{\pi }_{{S}_{1}}^{EE*}={\pi }_{{S}_{2}}^{NN*}-{\pi }_{{S}_{2}}^{EE*}\ge 0\).
-
(ii)
Proof of Part (ii) is similar to that of Part (i), and hence is omitted. \(\square\)
Proof of Proposition 11
-
(i)
First, \({\pi }_{E}^{BB*}-{\pi }_{E}^{NN*}=\frac{k\left(c-a+ak\right)\left(a+3c-ak-a\lambda +3c\lambda +ak\lambda \right)}{2{\left(\lambda +2\right)}^{2}{\left(1-k\right)}^{2}}<0\);
Second, if \(c<{c}_{1}\), then \({\pi }_{E}^{EE*}-{\pi }_{E}^{NN*}=\frac{{\left(2a-2c-4ak+a\lambda -c\lambda +2a{k}^{2}-ak\lambda -ck\lambda \right)}^{2}}{2{\left(\lambda +2\right)}^{2}{\left(1-k\right)}^{2}\left(2+\lambda -k\right)}>0\); if \(c\ge {c}_{1}\), then \({\pi }_{E}^{EE*}-{\pi }_{E}^{NN*}=0\). Therefore, \({\pi }_{E}^{EE*}\ge {\pi }_{E}^{NN*}\).
-
(ii)
If \(c<{c}_{2}\), then \({\pi }_{E}^{BE*}-{\pi }_{E}^{NN*}=\frac{\left(2-\lambda \right){T}_{1}}{{\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}{\left(32k+4k{\lambda }^{2}-k{\lambda }^{4}+20{\lambda }^{2}-{\lambda }^{4}-64\right)}^{2}}\).
When \(c=0\), we have \({T}_{1}={a}^{2}{\left(k-1\right)}^{2}{T}_{4}\), where \({T}_{4}\) decreases with \(k\), \({T}_{4}{|}_{k=0}>0\) and \({T}_{4}{|}_{k=1}=-\left(2{\lambda }^{4}-9{\lambda }^{3}-22{\lambda }^{2}-4\lambda +8\right){\left({\lambda }^{2}+2\lambda -4\right)}^{2}\). We show that if \(>\) \(0.484\), then \({T}_{4}{|}_{k=1}>0\); if \(\lambda \le 0.484\), then \({T}_{4}{|}_{k=1}\le 0\). Therefore, when \(\lambda >0.484\), we have \({T}_{4}>0\); when \(\lambda \le 0.484\), there exist a unique \({k}_{11}\) such that if \(k\ge {k}_{11}\), then \({T}_{4}\le 0\); if \(k<{k}_{11}\), then \({T}_{4}>0\).
When \(c={c}_{2}\), then \({T}_{1}=\frac{{a}^{2}{k}^{2}\left(2-\lambda \right){\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}{\left(k{\lambda }^{4}-4k{\lambda }^{2}-32k-20{\lambda }^{2}+{\lambda }^{4}+64\right)}^{2}}{{\left(4k{\lambda }^{2}-4k\lambda -4\lambda +k{\lambda }^{3}+4{\lambda }^{2}+{\lambda }^{3}-16\right)}^{2}}{T}_{2}\). Hence, when \(\lambda \le 0.911\), we have \({T}_{2}<0\); when \(\lambda >0.911\), we have \({T}_{2}{|}_{k=0}<0\) and \({T}_{2}{|}_{k=1}>0\), then there exists a unique \({k}_{22}\) (\({k}_{22}<{k}_{11}\)) such that if \(k<{k}_{22}\), then \({T}_{2}<0\), and if \(k\ge {k}_{22}\), then \({T}_{2}\ge 0\).
We conclude that: (1) When \(\lambda \le 0.484\), \(k>{k}_{11}\) and \(c<{c}_{2}\), then \({T}_{1}\le 0\) and \({\pi }_{E}^{BE*}\le {\pi }_{E}^{NN*}\); (2) when \(\lambda >0.484\), \(k>{k}_{22}\) and \(c<{c}_{2}\), then \({T}_{1}>0\) and \({\pi }_{E}^{BE*}>{\pi }_{E}^{NN*}\); (3) when \(\lambda \le 0.484\) and \(k\le {k}_{11}\) or when \(0.484<\lambda \le 0.911\) or \(\lambda >0.911\) and \(k\le {k}_{22}\), there exists a unique \({c}_{33}\in [0,{c}_{2})\) such that if \(c<{c}_{33}\), then \({T}_{1}>0\) and \({\pi }_{E}^{BE*}>{\pi }_{E}^{NN*}\); if \(c\ge {c}_{33}\), then \({T}_{1}\le 0\) and \({\pi }_{E}^{BE*}\le {\pi }_{E}^{NN*}\).
If \({c}_{2}\le c<{c}_{3}\), then \({\pi }_{E}^{BE*}-{\pi }_{E}^{NN*}=\frac{k\left(a-ak-c\right){T}_{3}}{16{\left(\lambda +2\right)}^{2}{\left(k-1\right)}^{2}}\). Hence, when \(\lambda \le 0.911\), we have \({T}_{3}\le 0\) and \({\pi }_{E}^{EB*}\le {\pi }_{E}^{EE*}\); (2) when \(\lambda >0.911\) and \(k<{k}_{22}\), we have \({T}_{3}\le 0\) and \({\pi }_{E}^{EB*}\le {\pi }_{E}^{EE*}\); (3) when \(\lambda >0.911\) and \(k\ge {k}_{22}\), there exists a unique \({c}_{22}\in [{c}_{2},{c}_{3})\) such that if \(c<{c}_{22}\), then \({T}_{3}>0\) and \({\pi }_{E}^{BE*}>{\pi }_{E}^{EE*}\); if \(c\ge {c}_{22}\), then \({T}_{3}\le 0\) and \({\pi }_{E}^{BE*}\le {\pi }_{E}^{EE*}\).
If \(c\ge {c}_{3}\), then \({\pi }_{E}^{BE*}-{\pi }_{E}^{NN*}=\frac{k\left(c-a+ak\right)\left(\begin{array}{c}4a+4c-4ak-4a\lambda +4c\lambda -a{\lambda }^{2}\\ -c{\lambda }^{2}+4ak\lambda +ak{\lambda }^{2}\end{array}\right)}{4{\left(\lambda + 2\right)}^{2}{\left(k-1\right)}^{2}}<0\).
To sum up, if either of the following conditions holds: (1) \(\lambda >0.484\), \(k>{k}_{22}\) and \(c<{c}_{2}\); (2) \(\lambda \le 0.484\), \(k\le {k}_{11}\) and \(c<{c}_{33}\); (3) \(0.484<\lambda \le 0.911\), \(k\le 1\) and \(c<{c}_{33}\); (4) \(\lambda >0.911\), \(k\le {k}_{22}\) and \(c<{c}_{33}\); (5) \(\lambda >0.911\), \(k\ge {k}_{22}\) and \({c}_{2}\le c<{c}_{22}\), then we have \({\pi }_{E}^{BE*}>{\pi }_{E}^{NN*}\); otherwise, \({\pi }_{E}^{EB*}\le {\pi }_{E}^{EE*}\).
-
(iii)
Since the bank’s profit is always equal to 0, we easily obtain \({\pi }_{B}^{BB*}>{\pi }_{B}^{NN*}=0\), \({\pi }_{B}^{EE*}={\pi }_{B}^{NN*}=0\) and \({\pi }_{B}^{BE*}\ge {\pi }_{B}^{NN*}=0\).\(\square\)
Rights and permissions
About this article
Cite this article
Cai, S., Yan, Q. Online sellers’ financing strategies in an e-commerce supply chain: bank credit vs. e-commerce platform financing. Electron Commer Res 23, 2541–2572 (2023). https://doi.org/10.1007/s10660-022-09552-w
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10660-022-09552-w