Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The influence of information cascades on online purchase behaviors of search and experience products

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

Online users usually observe or refer to others’ behaviors and discount their own information when purchasing products online. This research employed a fixed-effect regression model to elucidate how information cascades could influence online purchase behaviors and how they moderated the influence of online word-of-mouth and product prices. To uncover the underlying mechanisms behind informational cascades, we compare search products and experience products. In particular, we utilize publicly available data from a B2C e-commerce site in China, i.e., Tmall.com. Our results indicate that online users’ choice of products was heavily driven by changes in product rankings after controlling for cumulative sales, online user reviews and product price, as predicted by informational cascades theory. Due to the information cascades effect, review volume had no impact on online users’ choice of products with high rankings, whereas it did exert a significant positive impact on consumer purchase decisions of products with low rankings. User rating had no impact on online users’ purchase decisions. Product price had a significant and negative impact for products with high rankings, but had a significant and positive influence on users’ choice for products with low rankings. Moreover, information cascades were more prominent for experience goods than for search goods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asvanund, A., Clay, K., Krishnan, R., & Smith, M. (2004). An empirical analysis of network externalities in peer-to-peer music sharing networks. Information Systems Research, 15(2), 155–174.

    Article  Google Scholar 

  2. Avery, C., & Zemsky, P. (1998). Multidimensional uncertainty and herd behavior in financial markets. American Economic Review, 88(4), 724–748.

    Google Scholar 

  3. Bajari, P., & Ali, H. (2003). The winner’s curse, reserve prices and endogenous entry: Empirical insights from eBay auctions. Rand Journal of Economics, 3(2), 329–355.

    Article  Google Scholar 

  4. Banerjee, A. V. (1992). A simple model of herd behavior. Quarterly Journal of Economics, 107(3), 797–817.

    Article  Google Scholar 

  5. Bernhardt, D., Campello, M., & Kutsoati, E. (2009). Who herds? Journal of Financial Economics, 80(3), 657–675.

    Article  Google Scholar 

  6. Bikhchandani, S., & Sharma, S. (2001). Herd behavior in financial markets. IMF Staff Papers, 47(3), 279–310.

    Google Scholar 

  7. Bikhchandani, S., Hirshleifer, D., & Welch, I. (1992). A theory of fads, fashion, custom, and cultural change as informational cascades. Journal of Political Economy, 100(5), 992–1026.

    Article  Google Scholar 

  8. Celen, B., & Kariv, S. (2004). Distinguishing informational cascades from herd behavior in the laboratory. American Economic Review, 94(3), 484–498.

    Article  Google Scholar 

  9. Chen, P. Y., Wu, S. Y., & Yoon, J. (2004). The impact of online recommendations and consumer feedback on sales. In Proceedings of the 25th international conference on information systems, December 9–12. Washington.

  10. Chen, S. J., & Chang, T. Z. (2003). A descriptive model of online shopping process: Some empirical results. International Journal of Service Industry Management, 14(5), 557–569.

    Article  Google Scholar 

  11. Chen, Y. F. (2008). Herd behavior in purchasing books online. Computers in Human Behavior, 24(5), 1977–1992.

    Article  Google Scholar 

  12. Cheng J., Adamic L. A., Dow P. A., Kleinberg J., & Leskovec J. (2014). Can cascades be predicted? In Proceedings of the 23rd international conference on world wide web, April 7–11. Seoul.

  13. Chevalier, J. A., & Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews. Journal of Marketing Research, 43(3), 345–354.

    Article  Google Scholar 

  14. Choi, J. J., Laibson, D., Madrian, B. C., & Metrick, A. (2003). Optimal defaults. American Economic Review Papers and Proceedings., 93, 180–185.

    Article  Google Scholar 

  15. Cipriani, M., & Guarino, A. (2005). Herd behavior in a laboratory financial market. American Economic Review, 95(5), 1427–1443.

    Article  Google Scholar 

  16. CNBN (2015). Alibaba’s anti-counterfeit on scalping of twenty-three merchants from Tmall.com, all have been repelled and ten more merchants’ logistics have been forced off. Retrieved May 7, 2015, from http://china.cnr.cn/xwwgf/20150507/t20150507_518489320.shtml.

  17. Dong, B., Liu, Q., Fu, Y., & Zhang, L. (2014). A research of Taobao cheater detection. In The 13th IFIP conference on e-business, e-services and e-society, November 27–30. Sanya.

  18. Dow, P. A., Adamic, L. A., & Friggeri, A. (2013). The anatomy of large facebook cascades. In Proceedings of the seventh international conference on weblogs and social media, July 8–11. Cambridge, USA.

  19. Duan, W., Gu, B., & Whinston, A. B. (2008). Do online reviews matter?-An empirical investigation of panel data. Decision Support Systems, 45(4), 1007–1016.

    Article  Google Scholar 

  20. Duan, W., Gu, B., & Whinston, A. B. (2009). Informational cascades and software adoption on the internet: An empirical investigation. MIS Quarterly, 33(1), 23–48.

    Google Scholar 

  21. eMarketer (2014). Worldwide ecommerce sales to increase nearly 20% in 2014. Retrieved July 23, 2014, from http://www.emarketer.com/Article/Worldwide-Ecommerce-Sales-Increase-Nearly-20-2014/1011039.

  22. Formisano, R. A., Olshavsky, R. W., & Tapp, S. (1982). Choice strategy in a difficult task environment. Journal of Consumer Research, 8(4), 474–479.

    Article  Google Scholar 

  23. Galuba, W., Aberer, K., Chakraborty, D., Despotovic, Z., & Kellerer, W. (2010). Outtweeting the twitterers -predicting information cascades in microblogs. In Proceedings of the 3rd workshop on online social networks (WOSN), June 22–25. Boston, MA.

  24. Gardner, D. M. (1971). Is there a generalized price-quality relationship? Journal of Marketing Research, 8(2), 241–243.

    Article  Google Scholar 

  25. Gowrisankaran, G., & Stavins, J. (2004). Network externalities and technology adoption: Lessons from electronic payments. RAND Journal of Economics., 35, 260–276.

    Article  Google Scholar 

  26. Grinblatt, M., Titman, S., & Wermers, R. (1995). Momentum investment strategies, portfolio performance, and herding: A study of mutual fund behavior. American Economic Review, 85(5), 1088–1105.

    Google Scholar 

  27. Heffetz, O., & Shayo, M. (2009). How large are non-budget-constraint effects of prices on demand? American Economic Journal: Applied Economics., 1(4), 170–199.

    Google Scholar 

  28. Herzenstein, M., Dholakia, U. M., & Andrews, R. L. (2011). Strategic herding behavior in peer-to-peer loan auctions. Journal of Interactive Marketing, 25(1), 27–36.

    Article  Google Scholar 

  29. Huihui (2015). Online shopping big data report (Double 11 special issue in 2015). Retrieved January 6, 2016, from http://www.huihui.cn/deals/30219893.

  30. iProspect (2006). Search engine user behavior study. Retrieved January 10, 2015, from http://district4.extension.ifas.ufl.edu/Tech/TechPubs/WhitePaper_2006_SearchEngineUserBehavior.pdf.

  31. iResearch (2014). 2014 China online shoppers’ behavior report. Retrieved July 1, 2014, from http://report.iresearch.cn/2201.html.

  32. Jimenez, F. R., & Mendoza, N. A. (2013). Too popular to ignore: The influence of online reviews on purchase intentions of search and experience products. Journal of Interactive Marketing, 27(3), 226–235.

    Article  Google Scholar 

  33. Jin, G. Z., & Kato, A. (2006). Price quality and reputation: Evidence from an online field experiment. The Rand Journal of Economics, 37(4), 983–1005.

    Article  Google Scholar 

  34. Katz, M. L., & Shapiro, C. (1994). Systems competition and network effects. The Journal of Economic Perspectives., 8(2), 93–115.

    Article  Google Scholar 

  35. Kennedy, R. E. (2002). Strategy fads and competitive convergence: An empirical test for herd behavior in prime-time television programming. Journal of Industrial Economics., 50(1), 43–56.

    Google Scholar 

  36. King, M. F., & Balasubramanian, S. K. (1994). The effects of expertise, end goal, and product type on adoption of preference formation strategy. Journal of the Academy of Marketing Science, 22(2), 146–159.

    Article  Google Scholar 

  37. Lee, E., & Lee, B. (2012). Herding behavior in online P2P lending: An empirical investigation. Electronic Commerce Research and Applications, 11(5), 495–503.

    Article  Google Scholar 

  38. Lee, Y. J., Hosanagar, K., & Tan, Y. (2015). Do I follow my friends or the crowd? Information cascades in online movie ratings. Management Science. in press, doi:10.1287/mnsc.2014.2082.

  39. Leskovec, J., McGlohon, M., Glance, F.N., & Hurst, M. (2007). Patterns of cascading behavior in large blog graphs. In Proceedings of the 2007 SIAM international conference on data mining, April 26–28. Minneapolis, USA.

  40. Li, X. (2004). Informational cascades in IT adoption. Communications of the ACM, 47(4), 93–97.

    Article  Google Scholar 

  41. Li, X., & Hitt, L. M. (2008). Self-selection and information role of online product reviews. Information Systems Research., 19(4), 456–474.

    Article  Google Scholar 

  42. Li, X., & Wu, L. (2012). Herding and social media word-of-mouth: Evidence from Groupon. In Workshop on information systems and economics. December 15–16, Orlando, FL.

  43. Liu, Q., & Zhang, L. (2014). Information cascades in online reading: An empirical investigation of panel data. Library Hi Tech, 32(4), 687–705.

    Article  Google Scholar 

  44. Liu, X., He, M., Gao, F., & Xie, P. (2008). An empirical study of online shopping customer satisfaction in China: A holistic perspective. International Journal of Retail & Distribution Management., 36(11), 919–940.

    Article  Google Scholar 

  45. Liu, Y. (2006). Word-of-mouth for movies: Its dynamics and impact on box office receipts? Journal of Marketing, 70(3), 74–89.

    Article  Google Scholar 

  46. Mastrobuoni, G., & Peracchi, F. (2014). Price as a signal of product quality: Some experimental evidence. Journal of Wine Economics, 9(2), 135–152.

    Article  Google Scholar 

  47. McKinsey (2007). Insight into Chinese shoppers: McKinsey Global shopper survey. Retrieved May 23, 2007, from http://news.winshang.com/news-34613.html.

  48. Nelson, P. (1974). Advertising as information. Journal of Political Economy, 82(4), 729–754.

    Article  Google Scholar 

  49. NetEase (2015). Organized scalping is pushing Jingdong to death. Retrieved April 3, 2015, from http://money.163.com/15/0403/08/AM90C21300253G87.html.

  50. Onnela, J. P., & Reed-Tsochas, F. (2010). Spontaneous emergence of social influence in online systems. Proceedings of the National Academy of Sciences, 107(43), 18375–18380.

    Article  Google Scholar 

  51. Park, C., & Lee, T. M. (2009). Information direction, website reputation and eWOM effect: A moderating role of product type. Journal of Business Research, 62(1), 61–67.

    Article  Google Scholar 

  52. Resnick, P., & Richard, Z. (2002). Trust among strangers in Internet transactions: Empirical analysis of eBay’s reputation system. In M. R. Baye (Ed.), The economics of the internet and e-commerce (pp. 127–157). Elsevier Science: Amsterdam.

    Chapter  Google Scholar 

  53. Scarle, S., Arnab, S., Dunwell, I., Petridis, P., Protopsaltis, A., & Freitas, S. (2012). E-commerce transactions in a virtual environment: Virtual transactions. Electronic Commerce Research, 12(3), 379–407.

    Article  Google Scholar 

  54. Shiv, B., Carman, Z., & Ariely, D. (2005). Placebo effects of marketing actions: Consumers may get what they pay for. Journal of Marketing Research, 42(4), 383–393.

    Article  Google Scholar 

  55. Simonsohn, U., & Ariely, D. (2004). e-Bay’s happy hour: Non-rational herding in on-line auctions. Working Paper, Wharton School, University of Pennsylvania.

  56. Smith, L., & Sorensen, P. N. (2000). Pathological outcomes of observational learning. Econometrica, 68(2), 371–398.

    Article  Google Scholar 

  57. Sotiriadis, M. D., & Zyl, C. (2013). Electronic word-of-mouth and online reviews in tourism services: The use of twitter by tourists. Electronic Commerce Research, 13(1), 103–124.

    Article  Google Scholar 

  58. Spiekermann, S. (2001). Online information search with electronic agents: Drivers, impediments, and privacy issues, unpublished doctoral dissertation. Berlin: Humboldt University Berlin.

    Google Scholar 

  59. Sun, H. (2013). A longitudinal study of herd behavior in the adoption and continued use of technology. MIS Quarterly, 37(4), 1013–1041.

    Google Scholar 

  60. Szybillo, G. J., & Jacoby, J. (1974). Intrinsic versus extrinsic cues as determinants of perceived product quality. Journal of Applied Psychology, 59(1), 74–78.

    Article  Google Scholar 

  61. Tmall (2014). Catch on Tmall. Retrieved May 25, 2014, from http://www.tmall.com/go/chn/mall/zhaoshang_produce.php?spm=a221t.7038233.a2226n1.18.ZXGMIC.

  62. Tsao, W. C. (2014). Which type of online review is more persuasive? The influence of consumer reviews and critic ratings on moviegoers. Electronic Commerce Research, 14(4), 559–583.

    Article  Google Scholar 

  63. Welch, I. (2000). Herding among security analysts. Journal of Financial Economics, 58(3), 369–396.

    Article  Google Scholar 

  64. Xiao, B., & Benbasat, I. (2011). Product-related deception in e-commerce: A theoretical perspective. MIS Quarterly, 35(1), 169–195.

    Google Scholar 

  65. Zhang, J., & Liu, P. (2012). Rational herding in microloan markets. Management Science, 58(5), 892–912.

    Article  Google Scholar 

  66. Zhang, L., Zhu, J., & Liu, Q. (2012). A meta-analysis of mobile commerce adoption and the moderating effect of culture. Computers in Human Behavior, 28(5), 1902–1911.

    Article  Google Scholar 

Download references

Acknowledgments

This paper is supported by the Humanities and Social Sciences Foundation of the Ministry of Education of China (No: 13YJC630094), the National Natural Science Foundation of China (No: 71363022, No 71373192, No 71361012) and Foundation of Jiangxi Educational Committee (No GJJ150446).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Huang, S. & Zhang, L. The influence of information cascades on online purchase behaviors of search and experience products. Electron Commer Res 16, 553–580 (2016). https://doi.org/10.1007/s10660-016-9220-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10660-016-9220-0

Keywords

Navigation