Abstract
A concept map is a node-link diagram in which each node represents a concept and each link identifies the relationship between the two concepts it connects. We investigated how using concept maps influences learning by synthesizing the results of 142 independent effect sizes (n = 11,814). A random-effects model meta-analysis revealed that learning with concept and knowledge maps produced a moderate, statistically significant effect (g = 0.58, p < 0.001). A moderator analysis revealed that creating concept maps (g = 0.72, p < 0.001) was associated with greater benefit relative to respective comparison conditions than studying concept maps (g = 0.43, p < 0.001). Additional moderator analyses indicated learning with concept maps was superior to other instructional comparison conditions, and was effective across science, technology, engineering, and math (STEM) and non-STEM knowledge domains. Further moderator analyses, as well as implications for theory and practice, are provided.
Similar content being viewed by others
Notes
Hedges g is a commonly used mean difference effect size which represents the advantage of treatment expressed in standard deviations and adjusted for small sample sizes.
Throughout this article, k refers to the number of effect sizes averaged to calculate a weighted mean effect size.
For AERA papers, only paper titles were examined. Programs for the years 2007 and 2008 were unavailable at the time of the initial literature search. The programs were retrieved in 2015 and added 8 and 10 abstracts for consideration, respectfully.
The program for the year 2006 was unavailable at the time of the literature search.
We categorized studies as STEM or non-STEM due to the plethora of discipline-based research fields now prevalent in the scholarly community. We note that these coding categories are generally consistent with those used in Nesbit and Adesope’s (2006) analysis, which coded studies as physical science, general science (with subfields), or humanities (with subfields).
References
*Indicates Study Included in the Analysis.
*Abayomi, B. I. (1988). The effects of concept mapping and cognitive style on science achievement (Doctoral dissertation, Georgia State University College of Education, 1988). Dissertation Abstracts International, 49, 1420.
*Acat, M. B. (2008). Effectiveness of concept maps in vocabulary instruction. Egitim Arastirmalari-Eurasian Journal of Educational Research, 33, 1–16.
*Adesope, O. O., & Nesbit, J. C. (2013). Animated and static concept maps enhance learning from spoken narration. Learning and Instruction, 27, 1–10. doi:10.1016/j.learninstruc.2013.02.002.
*Akay, S. Ö., Kaya, B., & Kiliҫ, S. (2012). The effects of concept maps on the academic success and attitudes of 11th graders while teaching urinary system. International Online Journal of Primary Education, 1(1), 23–30.
*Akpinar, E., & Ergin, O. (2008). Fostering primary school students’ understanding of cells and other related concepts with interactive computer animation instruction accompanied by teacher and student-prepared concept maps. Asia-Pacific Forum on Science Learning and Teaching, 9(1). Retrieved from http://www.ied.edu.hk/apfslt/v9_issue1/akpinar/index.htm.
*Al Khawaldeh, S. A., & Al Olaimat, A. M. (2010). The contribution of conceptual change texts accompanied by concept mapping to eleventh-grade students understanding of cellular respiration concepts. Journal of Science Education and Technology, 19, 115–125. doi:10.1007/s10956-009-9185-z.
Amadieu, F., van Gog, T., Paas, F., Tricot, A., & Mariné, C. (2009). Effects of prior knowledge and concept-map structure on disorientation, cognitive load, and learning. Learning and Instruction, 19(5), 376–386. doi:10.1016/j.learninstruc.2009.02.005.
*Amer, A. A. (1994). The effect of knowledge-map and underlining training on the reading comprehension of scientific texts. English for Specific Purposes, 13, 35–45.
*Asan, A. (2007). Concept mapping in science class: a case study of fifth grade students. Educational Technology & Society, 10(1), 186–195.
*Berry, J. L. (2011). The effects of concept mapping and questioning on students’ organization and retention of science knowledge while using interactive informational read-alouds. Doctoral Dissertation, Texas A&M University.
*Bahr, G. S., & Dansereau, D. F. (2001). Bilingual knowledge maps (BiK-maps) in second-language vocabulary learning. Journal of Experimental Education, 70, 5–24. doi:10.1080/00220970109599496.
*Bahr, G. S., & Dansereau, D. F. (2005). Bilingual knowledge maps (BiK-maps) as a presentation format: delayed recall and training effects. Journal of Experimental Education, 73, 101–118. doi:10.3200/JEXE.73.2.101-118.
*Blankenship, J., & Dansereau, D. F. (2000). The effect of animated node-link displays on information recall. Journal of Experimental Education, 68, 293–308. doi:10.1080/00220970009600640.
Blunt, J. R., & Karpicke, J. D. (2014). Learning with retrieval-based concept mapping. Journal of Educational Psychology, 106(3), 849–858. doi:10.1037/a0035934.
*Bodolus, J. E. (1986). The use of a concept mapping strategy to facilitate meaningful learning for ninth grade students in science (Doctoral dissertation, Temple University, 1986). Dissertation Abstracts International, 47, 3387.
*BouJaoude, S., & Attieh, M. (2008). The effect of using concept maps as study tools on achievement in chemistry. Eurasia Journal of Mathematics, Science, & Technology Education, 4(3), 233–246.
*Bramwell-Lalor, S., & Rainford, M. (2014). The effects of using concept mapping for improving advanced level biology students’ lower- and higher-order cognitive skills. International Journal of Science Education, 36(5), 839–864. doi:10.1080/09500693.2013.829255.
Cañas, A. J., Hill, G., Carff, R., Suri, N., Lott, J., Gómez, G., Eskridge, T., Arroyo, M., & Carvajal, R. (2004). CmapTools: a knowledge modeling and sharing environment. In A. J. Cañas, J. D. Novak, & F. M. González (Eds.), Concept maps: Theory, methodology, technology. Proceedings of the first international conference on concept mapping Vol. I (pp. 125–133). Pamplona: Editorial Universidad Pública de Navarra.
*Chape, E. A. (2005). Improving clinical reasoning of physical therapist assistant students: a comparison of concept mapping and discussion in case-based learning. Doctoral Dissertation, Capella University.
*Chang, K., Sung, Y., & Chen, I. (2002). The effect of concept mapping to enhance text comprehension and summarization. Journal of Experimental Education, 71, 5–23. doi:10.1080/00220970209602054.
*Chang, W. (1994). The effects of using concept mapping to supplement class notes on the biology test scores of seventh-grade students in Taiwan, R.O.C. (Doctoral dissertation, University of Iowa, 1994). Dissertation Abstracts International, 55, 3800.
Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: how students study and use examples in learning to solve problems. Cognitive Science, 18, 145–182.
*Chin, D. B., Dohmen, I. M., & Schwartz, D. L. (2013). Young children can learn scientific reasoning with teachable agents. IEEE Transactions on Learning Technologies, 6(3), 248–257. doi:10.1109/TLT.2013.24.
*Chiou, C. C. (2008). The effect of concept mapping on students’ learning achievements and interests. Innovations in Education and Teaching International, 45(4), 375–387. doi:10.1080/14703290802377240.
*Chiou, C. C. (2009). Effects of concept mapping strategy on learning performance in business and economics statistics. Teaching in Higher Education, 14(1), 55–69. doi:10.1080/13562510802602582.
*Chou, P. N. (2009). The effect of varied concept maps and self-directed learning ability on students’ hypermedia learning. Doctoral Dissertation, The Pennsylvania State University.
*Chou, P. N., Chen, W. F., & Dwyer, F. (2011). The effects of varied concept mapping on students’ hypermedia learning. International Journal of Instructional Media, 38(2), 177–186.
*Chmielewski, T. L., & Dansereau, D. F. (1998). Enhancing the recall of text: knowledge mapping training promotes implicit transfer. Journal of Educational Psychology, 90, 407–413. doi:10.1037/0022-0663.90.3.407.
*Chularut, P., & DeBacker, T. K. (2004). The influence of concept mapping on achievement, self-regulation, and self-efficacy in students of English as a second language. Contemporary Educational Psychology, 29, 248–263. doi:10.1016/j.cedpsych.2003.09.001.
*Cliburn Jr., J. W. (1985). An Ausubelian approach to instruction: the use of concept maps as advance organizers in a junior college anatomy and physiology class (Doctoral dissertation, University of Southern Mississippi, 1985). Dissertation Abstracts International, 47, 852.
*Conklin, E. (2007). Concept mapping: impact on content and organization of technical writing in science. Doctoral Dissertation, Walden University.
*Czerniak, C. M., & Haney, J. J. (1998). The effect of collaborative concept mapping on elementary preservice teachers’ anxiety, efficacy, and achievement in physical science. Journal of Science Teacher Education, 9, 303–320. doi:10.1023/A:1009431400397.
*D’Antoni, A., Zipp, G., Olson, V., & Cahill, T. (2010). Does the mind map learning strategy facilitate information retrieval and critical thinking in medical students? BMC Medical Education, 10(1), 61–72. doi:10.1186/1472-6920-10-61.
*Dees, S. (1989). An analysis of the strategic processing of knowledge maps as text supplements and substitutes (Doctoral dissertation, Texas Christian University, 1989). Dissertation Abstracts International, 50, 4252.
Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., & Willingham, D. T. (2013). Improving students’ learning with effective learning techniques: promising directions from cognitive and educational psychology. Psychological Science in the Public Interest, 14(1), 4–58. doi:10.1177/1529100612453266.
Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple graphical test. British Medical Journal, 315, 629–634. doi:10.1136/bmj.315.7109.629.
*Erdogan, Y. (2009). Paper-based and computer-based concept mappings: the effects on computer achievement, computer anxiety, and computer attitude. British Journal of Educational Technology, 40(5), 821–836. doi:10.1111/j.1467-8535.2008.00856.x.
*Esiobu, G. O., & Soyibo, K. (1995). Effects of concept and vee mappings under three learning modes on students, cognitive achievement in ecology and genetics. Journal of Research in Science Teaching, 32, 971–995. doi:10.1002/tea.3660320908.
*Foor, J. L. (2011). The effectiveness of an online knowledge map instructional presentation. Doctoral Dissertation, The Pennsylvania State University.
Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering and mathematics. Proceedings of the National Academy of Sciences, 111(23), 8410–8415. doi:10.1073/pnas.1319030111.
*Gijlers, H., & de Jong, T. (2013). Using concept maps to facilitate collaborative simulation-based inquiry learning. The Journal of the Learning Sciences, 22, 340–374. doi:10.1080/10508406.2012.748664.
*González, H. L., Palencia, A. P., Umaña, L. A., Galindo, L., & Villafrade, M. L. A. (2008). Mediated learning experience and concept maps: a pedagogical tool for achieving meaningful learning in medical physiology students. Advances in Physiology Education, 32(4), 312–316. doi:10.1152/advan.00021.2007.
*Guastello, E. F., Beasley, M., & Sinatra, R. C. (2000). Concept mapping effects on science content comprehension of low-achieving inner-city seventh graders. Remedial and Special Education, 21, 356–365. doi:10.1177/074193250002100605.
*Gurlitt, J., & Renkl, A. (2008). Are high-coherent concept maps better for prior knowledge activation? Differential effects of concept mapping tasks on high school vs. university students. Journal of Computer Assisted Learning, 24, 407–419. doi:10.1111/j.1365-2729.2008.00277.x.
*Hagemans, M. G., van der Meij, H., & de Jong, T. (2013). The effects of a concept map-based support tool on simulation-based inquiry learning. Journal of Educational Psychology, 105(1), 1–24. doi:10.1037/a0029433.
*Hall, R. H., Dansereau, D. F., & Skaggs, L. P. (1992). Knowledge maps and the presentation of related information domains. Journal of Experimental Education, 61, 5–18. doi:10.1080/00220973.1992.9943845.
*Hall, R. H., & O’Donnell, A. M. (1996). Cognitive and affective outcomes of learning from knowledge maps. Contemporary Educational Psychology, 21, 94–101. doi:10.1006/ceps.1996.0008.
*Hall, R. H., & Sidio-Hall, M. A. (1994). The effect of color enhancement on knowledge map processing. Journal of Experimental Education, 62, 209–217. doi:10.1080/00220973.1994.9943841.
*Haugwitz, M., Nesbit, J. C., & Sandmann, A. (2010). Cognitive ability and the instructional efficacy of collaborative concept mapping. Learning and Individual Differences, 20, 536–543. doi:10.1016/j.lindif.2010.04.004.
*Hayati, A. M., & Shariatifar, S. (2009). Mapping strategies. Journal of College Reading and Learning, 39(2), 53–67.
Horton, P. B., McConney, A. A., Gallo, M., Woods, A. L., Senn, G. J., & Hamelin, D. (1993). An investigation of the effectiveness of concept mapping as an instructional tool. Science Education, 77, 95–111. doi:10.1002/sce.3730770107.
*Huang, H. S., Chiou, C. C., Chiang, H. K., Lai, S. H., Huang, C. Y., & Chou, Y. Y. (2012). Effects of multidimensional concept maps on fourth graders’ learning in web-based computer course. Computers & Education, 58, 863–873. doi:10.1016/j.compedu.2011.10.016.
*Hwang, G. J., Kuo, F. R., Chen, N. S., & Ho, H. J. (2014). Effects of an integrated concept mapping and web-based problem-solving approach on students’ learning achievements, perceptions and cognitive loads. Computers & Education, 71, 77–86. doi:10.1016/j.compedu.2013.09.013.
*Hwang, G. J., Shi, Y. R., & Chu, H. C. (2011). A concept map approach to developing collaborative mindtools for context-aware ubiquitous learning. British Journal of Educational Technology, 42(5), 778–789. doi:10.1111/j.1467-8535.2010.01102.x.
*Hwang, G. J., Yang, L. H., & Wang, S. Y. (2013). A concept map-embedded educational computer game for improving students’ learning performance in natural science courses. Computers & Education, 69, 121–130. doi:10.1016/j.compedu.2013.07.008.
*Jia, J. (2007). The effects of concept mapping as advance organizers in instructional designs for distance learning programs. Doctoral Dissertation, Wayne State University.
*Jegede, O. J., Alaiyemola, F. F., & Okebukola, P. A. (1990). The effect of concept mapping on students’ anxiety and achievement in biology. Journal of Research in Science Teaching, 27, 951–960. doi:10.1002/tea.3660271004.
*Johansson, K., Salanterä, S., & Katajisto, J. (2007). Empowering orthopaedic patients through preadmission education: results from a clinical study. Patient Education and Counseling, 66, 84–91. doi:10.1016/j.pec.2006.10.011.
*Jolly, A. B. (1998). The effectiveness of learning with concept mapping on the science problem solving of sixth grade children (Doctoral dissertation, Indiana University of Pennsylvania, 1998). Dissertation Abstracts International, 59, 3356.
*Kalhor, M., & Shakibaei, G. (2012). Teaching reading comprehension through concept map. Life Science Journal, 9(4), 725–731.
Kalyuga, S. (2009). Knowledge elaboration: a cognitive load perspective. Learning and Instruction, 19(5), 402–410.
Karpicke, J. D., & Blunt, J. R. (2011). Retrieval practice produces more learning than elaborative studying with concept mapping. Science, 331, 772–775. doi:10.1126/science.1199327.
Karpicke, J. D., Blunt, J. R., Smith, M. A., & Karpicke, S. S. (2014). Retrieval-based learning: the need for guided retrieval in elementary school children. Cognition and Instruction, 3(3), 198–206. doi:10.1016/j.jarmac.2014.07.008.
*Keown, S. L. (2008). Effects of the use of thematic organizers in conjunction with concept mapping on learning, misconceptions, and retention in middle school science classes. Doctoral Dissertation, Tennessee State University.
*Khajavi, Y., & Ketabi, S. (2012). Influencing EFL learners’ reading comprehension and self-efficacy beliefs: the effect of concept mapping strategy. Porta Linguarum, 17, 9–27.
*Kim, P., & Olaciregui, C. (2008). The effects of a concept map-based information display in an electronic portfolio system on information procession and retention in a fifth-grade science class covering the Earth’s atmosphere. British Journal of Educational Technology, 39(4), 700–714. doi:10.1111/j.1467-8535.2007.00763.x.
*Kolloffel, B., Eysink, T. H. S., & de Jong, T. (2011). Comparing the effects of representational tools in collaborative and individual inquiry learning. Computer-Supported Collaborative Learning, 6, 223–251. doi:10.1007/s11412-011-9110-3.
*Lambiotte, J. G., & Dansereau, D. F. (1992). Effects of knowledge maps and prior knowledge on recall of science lecture content. Journal of Experimental Education, 60, 189–201. doi:10.1080/00220973.1992.9943875.
*Lambiotte, J. G., Skaggs, L. P., & Dansereau, D. F. (1993). Learning from lectures: effects of knowledge maps and cooperative review strategies. Applied Cognitive Psychology, 7, 483–497. doi:10.1002/acp.2350070604.
*Lee, P. (1997). Integrating concept mapping and metacognitive methods in a hypermedia environment for learning science (Doctoral dissertation, Purdue University, 1997). Dissertation Abstracts International, 58, 3405.
*Lee, J. W., & Segev, A. (2012). Knowledge maps for e-learning. Computers & Education, 59, 353–364. doi:10.1016/j.compedu.2012.01.017.
*Lehman, J. D., Carter, C., & Kahle, J. B. (1985). Concept mapping, vee mapping, and achievement: results of a field study with black high school students. Journal of Research in Science Teaching, 22, 663–673. doi:10.1002/tea.3660220706.
*Ling, Y., & Boo, H. K. Concept mapping and pupils’ learning in primary science. Asia-Pacific Forum on Science Learning and Teaching, 8(2). Retrieved from http://www.ied.edu.hk/apfslt/v8_issue2/lingy/index.htm.
*Liu, P. L., Chen, C. J., & Chang, Y. J. (2010). Effects of a computer-assisted concept mapping learning strategy on EFL college students’ English reading comprehension. Computers & Education, 54, 436–445. doi:10.1016/j.compedu.2009.08.027.
*Marée, T. J., van Bruggen, J. M., & Jochems, W. M. G. (2013). Effective self-regulated science learning through multimedia-enriched skeleton concept maps. Research in Science & Technological Education, 31(1), 16–30. doi:10.1080/02635143.2013.782283.
*Markow, P. G. (1996). The effects of student-constructed concept maps on achievement in a first-year college instructional chemistry laboratory (Doctoral dissertation, University of Connecticut, 1996). Dissertation Abstracts International, 56, 3900.
Mayer, R. E., & Fiorella, L. (2014). Principles for reducing extraneous processing in multimedia learning: Coherence, signaling, redundancy, spatial contiguity, and temporal contiguity principles. The Cambridge Handbook of Multimedia Learning (2nd ed.pp. 279–315). New York: Cambridge University Press.
*Meijerink, R., & van der Veen, J. (2010). Incidental use of concept maps and its effects on student understanding of optics. Proceedings of the 2010 NARST Annual Meeting.
*Miller, S. M., Geng, Y., Zheng, R. Z., & Dewald, A. (2012). Presentation of complex medical information: Interaction between concept maps and spatial ability on deep learning. International Journal of Cyber Behavior, Psychology, and Learning, 2(1), 42–53. doi:10.4018/ijcbpl.2012010104.
*Moreland, J. L., Dansereau, D. F., & Chmielewski, T. L. (1997). Recall of descriptive information: the roles of presentation format, annotation strategy, and individual differences. Contemporary Educational Psychology, 22, 521–533. doi:10.1006/ceps.1997.0950.
*Morey, J. T., & Dansereau, D. F. (2010). Decision-making strategies for college students. Journal of College Counseling, 13, 155–168.
*Nesbit, J. C., & Adesope, O. (2005). Dynamic concept maps. In P. Kommers & G. Richards (Eds.), Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications 2005 (pp. 4323–4329). Chesapeake: Association for the Advancement of Computing in Education.
Nesbit, J. C., & Adesope, O. O. (2006). Learning with concept and knowledge maps: a meta-analysis. Review of Educational Research, 76(3), 413–448. doi:10.3102/00346543076003413.
*Nesbit, J. C., & Adesope, O. O. (2011). Learning from animated concept maps with concurrent audio narration. The Journal of Experimental Education, 79, 209–230. doi:10.1080/00220970903292918.
Nesbit, J. C., & Adesope, O. O. (2013). Concept maps for learning. Learning through visual displays (pp. 303–328). Charlotte: Information Age Publishing.
*Nicoll, G., Francisco, J., & Nakhleh, M. (2001). An investigation of the value of using concept maps in general chemistry. Journal of Chemical Education, 78, 1111–1117. doi:10.1021/ed078p1111.
*Novak, A. D. (1994). The effects of cooperative learning with concept mapping in a preservice teacher education course (Doctoral dissertation, Indiana University, 1994). Dissertation Abstracts International, 56, 895.
Novak, J. D. (1990). Concept maps and vee diagrams: two metacognitive tools to facilitate learning. Instructional Science, 19, 29–52. doi:10.1007/BF00377984.
Novak, J. D. (2002). Meaningful learning: the essential factor for conceptual change in limited or inappropriate propositional hierarchies leading to empowerment of learners. Science Education, 86(4), 548–571.
Novak, J. D. & Cañas, A. J. (2008). The theory underlying concept maps and how to construct and use them. Technical Report IHMC CmapTools 2006–01 Rev 01–2008, Florida Institute for Human and Machine Cognition. Retrieved on June 12, 2016 from http://cmap.ihmc.us/Publications/ResearchPapers/TheoryUnderlyingConceptMaps.pdf.
Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. Cambridge University Press.
O’Donnell, A. M., Dansereau, D. F., & Hall, R. H. (2002). Knowledge maps as scaffolds for cognitive processing. Educational Psychology Review, 14(1), 71–86. doi:10.1023/A:1013132527007.
*Olgun, Ö. S. Ç. (2008). Examining the fifth graders’ understanding of heat and temperature concepts via concept mapping. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi – H. U. Journal of Education, 34, 54–62.
*Okebukola, P. A. (1990). Attaining meaningful learning of concepts in genetics and ecology: an examination of the potency of the concept-mapping technique. Journal of Research in Science Teaching, 27, 493–504. doi:10.1002/tea.3660270508.
*Okebukola, P. A. (1992). Concept mapping with a cooperative learning flavor. American Biology Teacher, 54, 218–221. doi:10.2307/4449458.
*Okebukola, P. A., & Jegede, O. J. (1988). Cognitive preference and learning-mode as determinants of meaningful learning through concept mapping. Science Education, 72, 489–500. doi:10.1002/sce.3730720408.
*Özmen, H., Demırcıoğlu, G., & Coll, R. K. (2009). A comparative study of the effects of a concept mapping enhanced laboratory experience on Turkish high school students’ understanding of acid-base chemistry. International Journal of Science and Mathematics Education, 7, 1–24. doi:10.1007/s10763-007-9087-6.
*Pankratius, W. J. (1987). Building an organized knowledge base: Concept mapping and achievement in secondary school physics (Doctoral dissertation, Georgia State University College of Education, 1987). Dissertation Abstracts International, 49, 474.
*Patterson, M. E. (1993). Conceptual analysis of spatial–semantic display processing (knowledge maps) (Doctoral dissertation, Texas Christian University, 1993). Dissertation Abstracts International, 55, 226.
*Patterson, M. E., Dansereau, D. F., & Newbern, D. (1992). Effects of communication aids and strategies on cooperative teaching. Journal of Educational Psychology, 84, 453–461. doi:10.1037/0022-0663.84.4.453.
*Patterson, M. E., Dansereau, D. F., & Wiegmann, D. A. (1993). Receiving information during a cooperative episode: effects of communication aids and verbal ability. Learning and Individual Differences, 5, 1–11. doi:10.1016/1041-6080(93)90022-K.
*Potelle, H., & Rouet, J. (2003). Effect of content representation and readers’ prior knowledge on the comprehension of hypertext. International Journal of Human–Computer Studies, 58, 327–345. doi:10.1016/S1071-5819(03)00016-8.
*Pickens, C. L. (2007). Concept mapping: methods to improve critical thinking. Doctoral Dissertation, Wayne State University.
*Prater, D. L., & Terry, C. A. (1988). Effects of mapping strategies on reading comprehension and writing performance. Reading Psychology, 9, 101–120. doi:10.1080/0270271880090203.
*Redford, J. S., Thiede, K. W., Wiley, J., & Griffin, T. D. (2012). Concept mapping improves metacomprehension accuracy among 7th graders. Learning and Instruction, 22, 262–270. doi:10.1016/j.learninstruc.2011.10.007.
*Rewey, K. L., Dansereau, D., Dees, S., Skaggs, L., & Pitre, U. (1992). Scripted cooperation and knowledge map supplements: effects on the recall of biological and statistical information. Journal of Experimental Education, 60, 93–107. doi:10.1080/00220973.1991.10806582.
*Rewey, K. L., Dansereau, D. F., & Peel, J. L. (1991). Knowledge maps and information processing strategies. Contemporary Educational Psychology, 16, 203–214. doi:10.1016/0361-476X(91)90021-C.
*Rewey, K. L., Dansereau, D. F., Skaggs, L. P., Hall, R. H., & Pitre, U. (1989). Effects of scripted cooperation and knowledge maps on the processing of technical material. Journal of Educational Psychology, 81, 604–609. doi:10.1037/0022-0663.81.4.604.
*Reynolds, S. B., & Dansereau, D. (1990). The knowledge hypermap: an alternative to hypertext. Computers in Education, 14, 409–416. doi:10.1016/0360-1315(90)90034-5.
*Reynolds, S. B., Patterson, M. E., Skaggs, L. P., & Dansereau, D. F. (1991). Knowledge hypermap and cooperative learning. Computers in Education, 16, 167–173. doi:10.1016/0360-1315(91)90023-K.
Rosenthal, R. (1995). Critiquing Pygmalion: a 25-year perspective. Current Directions in Psychological Science, 4, 171–172. doi:10.1111/1467-8721.ep10772607.
Rosenthal, R. (1979). The “file drawer problem” and tolerance for null results. Psychological Bulletin, 86(3), 638–641. doi:10.1037/0033-2909.86.3.638.
Salata, M. A. (1999). Concept maps as organizers in an introductory university level biology course (Doctoral dissertation, University of Virginia, 1999). Dissertation Abstracts International, 60, 1969.
*Sas, M. (2008). The effects of students’ asynchronous online discussions of conceptual errors on intentionally flawed teacher-constructed concept maps. Doctoral Dissertation, University of Nevada – Las Vegas.
*Sawaya, M. A. (2010). Concept mapping as a teaching strategy on knowledge of community/public health nursing among accelerated baccalaureate nursing students. Doctoral Dissertation, University of Northern Colorado.
*Scandrett, J. F. (2005). The efficacy of concept mapping in aural skills training. Doctoral Dissertation, University of Pittsburgh.
*Schmid, R. F., & Telaro, G. (1990). Concept mapping as an instructional strategy for high school biology. Journal of Educational Research, 84, 78–85. doi:10.1080/00220671.1990.10885996.
*Shaw, R. S. (2010). A study of learning performance of e-learning materials design with knowledge maps. Computers & Education, 54, 253–264. doi:10.1016/j.compedu.2009.08.007.
*Shaw, R. S., Keh, H. C., Huang, N. C., & Huang, T. C. (2011). Information security awareness on-line materials design with knowledge maps. International Journal of Distance Education Technologies, 9(4), 41–56. doi:10.4018/978-1-4666-2032-2.ch021.
*Skaggs, L. P. (1988). The effects of knowledge maps and pictures on the acquisition of scientific information. Unpublished doctoral dissertation, Texas Christian University, Fort Worth.
*Smith, B. E. (1992). Linking theory and practice in teaching basic nursing skills. Journal of Nursing Education, 31, 16–23. doi:10.3928/0148-4834-19920101-06.
Smith, M. A., Blunt, J. R., Whiffen, J. W., & Karpicke, J. D. (2016). Does providing prompts during retrieval practice improve learning? Applied Cognitive Psychology, 30, 544–553.
*Spaulding, D. T. (1989). Concept mapping and achievement in high school biology and chemistry (Doctoral dissertation, Florida Institute of Technology, 1989). Dissertation Abstracts International, 50, 1619.
*Stanisavljevic, J., & Djuric, D. (2013). The application of programmed instruction in fulfilling the physiology course requirement. Journal of Biological Education, 47(1), 29–38. doi:10.1080/00219266.2012.753103.
*Su, Y., & Klein, J. D. (2006). Effects of navigation tools and computer confidence on performance and attitudes in a hypermedia learning environment. Journal of Educational Multimedia and Hypermedia, 15(1), 87–106.
*Surapaneni, K. M., & Tekian, A. (2013). Concept mapping enhances learning of biochemistry. Medical Education Online, 18, 20157. doi:10.3402/meo.v18i0.20157.
Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Upper Saddle River: Pearson Education Inc..
*Tastan, I., Dıkmenlı, M., & Cardak, O. (2008). Effectiveness of the conceptual change texts accompanied by concept maps about students’ understanding of the molecules carrying genetic information. Asia-Pacific Forum on Science Learning and Teaching, 9(1), 1–13.
*Uzuntiryaki, E., & Geban, Ö. (2005). Effect of conceptual change approach accompanied with concept mapping on understanding of solution concepts. Instructional Science, 33, 311–339. doi:10.1007/s11251-005-2812-z.
*Udupa, P. S. (1992). Concept mapping/cooperative learning as a technique to improve the learning of “at-risk” and nondisabled students (Doctoral dissertation, University of Minnesota, 1992). Dissertation Abstracts International, 53, 2757.
*Umar, I. N. (1999). A study of the effects of cognitive styles and learning strategies among Malaysian pre-college students in a hypermedia environment. (Doctoral dissertation, University of Pittsburgh, 1999). Dissertation Abstracts International, 61, 145.
Van Gog, T. (2014). The signaling (or cueing) principle in multimedia learning. The Cambridge Handbook of Multimedia Learning (2nd ed.pp. 263–278). New York: Cambridge University Press.
*Veronese, C., Richards, J. B., Pernar, L., Sullivan, A. M., & Schwartzstein, R. M. (2013). A randomized pilot study of the use of concept maps to enhance problem-based learning among first-year medical students. Medical Teacher, 35(9), e1478–e1484. doi:10.3109/0142159X.2013.785628.
*Wachter, L. N. (1993). An investigation of the effects of hierarchical concept mapping as a prefatory organizer on fourth-grade students’ comprehension and retention of expository prose (Doctoral dissertation, Pennsylvania State University, 1993). Dissertation Abstracts International, 54, 2106.
*Wallace, D. S., West, S. C., Ware, A. M., & Dansereau, D. F. (1998). The effect of knowledge maps that incorporate gestalt principles on learning. Journal of Experimental Education, 67, 5–16. doi:10.1080/00220979809598341.
*Wang, A. (2007). The effects of varied instructional aids and field dependence-independence on learners’ structural knowledge in a hypermedia environment. Doctoral Dissertation, Ohio University.
*Wang, C. X., & Dwyer, F. M. (2006). Instructional effects of three concept mapping strategies in facilitating student achievement. International Journal of Instructional Media, 33(2), 135–151.
*Wiegmann, D. A. (1992). On the dual processing of spatial–graphic and verbal information (Doctoral dissertation, Texas Christian University, 1992). Dissertation Abstracts International, 53, 3193.
*Willerman, M., & Mac Harg, R. A. (1991). The concept map as an advance organizer. Journal of Research in Science Teaching, 28, 705–712. doi:10.1002/tea.3660280807.
*Yuruk, N., Beeth, M. E., & Andersen, C. (2009). Analyzing the effect of metaconceptual teaching practices on students’ understanding of force and motion concepts. Research in Science Education, 39, 449–475. doi:10.1007/s11165-008-9089-6.
*Zittle, F. J. (2001). The effect of web-based concept mapping on analogical transfer (Doctoral dissertation, University of New Mexico, 2001). Dissertation Abstracts International, 62, 3695.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Funding
Not applicable (no funding).
Electronic supplementary material
.
ESM 1
(PDF 272 kb)
Rights and permissions
About this article
Cite this article
Schroeder, N.L., Nesbit, J.C., Anguiano, C.J. et al. Studying and Constructing Concept Maps: a Meta-Analysis. Educ Psychol Rev 30, 431–455 (2018). https://doi.org/10.1007/s10648-017-9403-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10648-017-9403-9