Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On the image of an affine subspace under the inverse function within a finite field

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We consider the function \(x^{-1}\) that inverses a finite field element \(x \in \mathbb {F}_{p^n}\) (p is prime, \(0^{-1} = 0\)) and affine \(\mathbb {F}_{p}\)-subspaces of \(\mathbb {F}_{p^n}\) such that their images are affine subspaces as well. It is proved that the image of an affine subspace L, \(|L |> 2\), is an affine subspace if and only if \(L = s\mathbb {F}_{p^k}\), where \(s\in \mathbb {F}_{p^n}^{*}\) and \(k \mid n\). In other words, it is either a subfield of \(\mathbb {F}_{p^n}\) or a subspace consisting of all elements of a subfield multiplied by \(s\). This generalizes the results that were obtained for linear invariant subspaces in 2006. As a consequence, the function \(x^{-1}\) maps the minimum number of affine subspaces to affine subspaces among all invertible power functions. In addition, we propose a sufficient condition providing that a function \(A(x^{-1}) + b\) has no invariant affine subspaces U of cardinality \(2< |U |< p^n\) for an invertible linear transformation \(A: \mathbb {F}_{p^n} \rightarrow \mathbb {F}_{p^n}\) and \(b \in \mathbb {F}_{p^n}^{*}\). As an example, it is shown that the S-box of the AES satisfies the condition. Also, we demonstrate that some functions of the form \(\alpha x^{-1} + b\) have no invariant affine subspaces except for \(\mathbb {F}_{p^n}\), where \(\alpha , b \in \mathbb {F}_{p^n}^{*}\) and n is arbitrary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Budaghyan L.: Construction and Analysis of Cryptographic Functions. Springer, Cham (2015).

    Google Scholar 

  2. Burov D.A.: About existence of the special nonlinear invariants for round functions of XSL-ciphers. Diskr. Mat. 33(2), 31–45 (2021). https://doi.org/10.4213/dm1638(in Russian).

  3. Caranti A., Volta F.D., Sala M., Villani F.: Imprimitive permutations groups generated by the round functions of key-alternating block ciphers and truncated differential cryptanalysis. arXiv (2006). https://doi.org/10.48550/ARXIV.MATH/0606022.

  4. Caranti A., Volta F., Sala M.: An application of the O’Nan–Scott theorem to the group generated by the round functions of an AES-like cipher. Des. Codes Cryptogr. 52, 293–301 (2009). https://doi.org/10.1007/s10623-009-9283-1.

    Article  MathSciNet  Google Scholar 

  5. Caranti A., Volta F., Sala M.: On some block ciphers and imprimitive groups. Appl. Algebra Eng. Commun. Comput. 20, 339–350 (2009). https://doi.org/10.1007/s00200-009-0100-x.

    Article  MathSciNet  Google Scholar 

  6. Carlet C.: Open questions on nonlinearity and on APN functions. In: Koç Ç.K., Mesnager S., Savaş E. (eds.) Arithmetic of Finite Fields. LNCS, vol. 9061, pp. 83–107. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16277-5_5.

    Chapter  Google Scholar 

  7. Carlet C.: Boolean Functions for Cryptography and Coding Theory. Cambridge University Press, Cambridge (2021).

    Google Scholar 

  8. Daemen J., Rijmen V.: The Design of Rijndael: AES - The Advanced Encryption Standard, p. 238. Springer, Heidelberg (2002) https://doi.org/10.1007/978-3-662-04722-4.

    Book  Google Scholar 

  9. Dinur I., Shamir A.: Breaking grain-128 with dynamic cube attacks. In: Joux A. (ed.) Fast Software Encryption. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (2011).

    Chapter  Google Scholar 

  10. Dworkin M., Barker E., Nechvatal J., Foti J., Bassham L., Roback E., Dray J.: Advanced Encryption Standard (AES). Federal Inf. Process. Stds. (NIST FIPS). National Institute of Standards and Technology, Gaithersburg (2001). https://doi.org/10.6028/NIST.FIPS.197.

  11. Goldstein D., Guralnick R., Small L., Zelmanov E.: Inversion-invariant additive subgroups of division rings. Pac. J. Math. 227(2), 287–294 (2006). https://doi.org/10.2140/pjm.2006.227.287.

    Article  MathSciNet  Google Scholar 

  12. Hua L.-K.: Some Properties of a field. Proc. Natl. Acad. Sci. USA 35(9), 533–537 (1949). https://doi.org/10.1073/pnas.35.9.533.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Idrisova V.A., Tokareva N.N., Gorodilova A.A., Beterov I.I., Bonich T.A., Ishchukova E.A., Kolomeec N.A., Kutsenko A.V., Malygina E.S., Pankratova I.A., Pudovkina M.A., Udovenko A.N.: Mathematical problems and solutions of the ninth International Olympiad in cryptography NSUCRYPTO. Prikl. Diskr. Mat. 62 (2023, in press)

  14. Jacobson N.: Basic Algebra I, 2nd edn Dover Publications, Mineola (2009).

    Google Scholar 

  15. Leander G., Abdelraheem M.A., AlKhzaimi H., Zenner E.: A Cryptanalysis of PRINTCIPHER: The Invariant Subspace Attack. In: Rogaway, P. (ed.) Advances in Cryptology—CRYPTO 2011. LNCS, vol. 6841, pp. 206–221. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_12.

  16. Leander G., Minaud B., Rønjom S.: A Generic Approach to Invariant Subspace Attacks: Cryptanalysis of Robin, iSCREAM and Zorro. In: Oswald E., Fischlin M. (eds.) Advances in cryptology – EUROCRYPT 2015. LNCS, vol. 9056, pp. 254–283. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_11.

    Chapter  Google Scholar 

  17. Lidl R., Niederreiter H.: Finite Fields, 2nd edn. Encyclopedia of Mathematics and its Applications, vol. 20. Cambridge University Press, Cambridge (1997)

  18. Logachev O.A., Salnikov A.A., Yashchenko V.V.: Boolean Functions in Coding Theory and Cryptography. Translations of Mathematical Monographs, vol. 241. American Mathematical Society, Providence (2012).

    Book  Google Scholar 

  19. Mattarei S.: Inverse-closed additive subgroups of fields. Isr. J. Math. 159, 343–347 (2007). https://doi.org/10.1007/s11856-007-0050-6.

    Article  MathSciNet  Google Scholar 

  20. Nyberg K.: Differentially uniform mappings for cryptography. In: Helleseth T. (ed.) Advances in Cryptology — EUROCRYPT’93. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_6.

    Chapter  Google Scholar 

  21. Todo Y., Leander G., Sasaki Y.: Nonlinear invariant attack: practical attack on full SCREAM, iSCREAM, and Midori64. J. Cryptol. 32, 1383–1422 (2019). https://doi.org/10.1007/s00145-018-9285-0.

    Article  MathSciNet  Google Scholar 

  22. Tokareva N.: Bent Functions: Results and Applications to Cryptography. Academic Press, New York (2015).

    Book  Google Scholar 

  23. Trifonov D.I., Fomin D.B.: Invariant subspaces in SPN block cipher. Prikl. Diskr. Mat. 54, 58–76 (2021) (in Russian).

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The work is supported by the Mathematical Center in Akademgorodok under the Agreement No. 075–15–2022–282 with the Ministry of Science and Higher Education of the Russian Federation. The authors would like to thank the anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Kolomeec.

Additional information

Communicated by C. Carlet.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolomeec, N., Bykov, D. On the image of an affine subspace under the inverse function within a finite field. Des. Codes Cryptogr. 92, 467–476 (2024). https://doi.org/10.1007/s10623-023-01316-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01316-3

Keywords

Mathematics Subject Classification

Navigation