Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Rank weight hierarchy of some classes of polynomial codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We study the rank weight hierarchy, thus in particular the minimum rank distance, of polynomial codes over the finite field \(\mathbb {F}_{q^m}\), q a prime power, \(m \ge 2\). We assume that polynomials involved are squarefree. We establish the rank weight hierarchy of \([n,n-1]\) constacyclic codes. We characterize polynomial codes of rth rank weight r, and in particular of first rank or minimum rank distance 1. Finally, we provide a refinement of the Singleton bound, from which we show that cyclic codes cannot be MRD (maximum rank distance) codes, but constacyclic codes can be.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Berhuy G., Fasel J., Garotta O.: Rank weights for arbitrary finite field extensions. Adv. Math. Commun. 15(4), 575–587 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  2. Ducoat J.: Generalized rank weights: a duality statement. Finite Fields and Applications (Fq11). http://arxiv.org/abs/1306.3899 (2013).

  3. Ducoat J., Oggier F.: “Rank weight hierarchy of some classes of cyclic codes’’, IEEE Information Theory Workshop (ITW 2014). Hobbart, Australia (2014).

    Google Scholar 

  4. Gabidulin E.M.: Theory of codes with maximal rank distance. Probl. Inf. Transm. 21, 1–12 (1985).

    MathSciNet  MATH  Google Scholar 

  5. Ghorpade S., Johnsen T.: A polymatroid approach to generalized weights of rank metric codes. Des. Codes Cryptogr. 88(12), 2531–2546 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  6. Huffman W.C., Pless V.: Fundamentals of Error Correcting Codes. Cambridge University Press, Cambridge (2003).

    Book  MATH  Google Scholar 

  7. Jurrius R., Pellikaan R.: On defining generalized rank weights. Adv. Math. Commun. 11(1), 225–235 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  8. Kurihara J., Matsumoto R., Uyematsu T.: Relative generalized rank weight of linear codes and its applications to network coding. IEEE Trans. Inf. Theory 61, 7 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  9. Lidl R., Niederreiter H.: Finite Fields. Encyclopedia of Mathematics and its Applications, 2nd edn Cambridge University Press, Cambridge (2008).

    MATH  Google Scholar 

  10. Oggier F., Sboui A.: On the existence of generalized rank weights. In: International Symposium on Information Theory and Its Applications (ISITA 2012), Honolulu (2012).

  11. Roth R.M.: Maximum-rank array codes and their application to crisscross error correction. IEEE Trans. Inf. Theory 37(2), 328–336 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  12. SageMath: The Sage mathematics software system (version 8.1), The Sage Developers. http://www.sagemath.org (2018).

  13. Shiromoto K.: Codes with the rank metric and matroids. Des. Codes Cryptogr. 87(8), 1765–1776 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  14. Sripati U., Sundar Rajan B.: On the rank-distance of cyclic codes. In: IEEE International Symposium on Information Theory (ISIT 2003), Yokohama (2003).

  15. Sripati U., Sundar Rajan B.: On the rank-distance of cyclic codes. Technical Report TR-PME-2003-04 (2022).

  16. Stichtenoth H.: On the dimension of subfield subcodes. IEEE Trans. Inf. Theory 36(1), 1–10 (1990).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The early stage of this research by J. Ducoat and F. Oggier was supported by the Singapore National Research Foundation under Research Grant NRF-RF2009-07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédérique Oggier.

Additional information

Communicated by M. Lavrauw.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ducoat, J., Oggier, F. Rank weight hierarchy of some classes of polynomial codes. Des. Codes Cryptogr. 91, 1627–1644 (2023). https://doi.org/10.1007/s10623-022-01181-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01181-6

Keywords

Mathematics Subject Classification

Navigation