Abstract
This work deals with partial MDS (PMDS) codes, a special class of locally repairable codes, used for distributed storage systems. We first show that a known construction of these codes, using Gabidulin codes, can be extended to use any maximum rank distance code. Then we define a standard form for the generator matrices of PMDS codes and use this form to give an algebraic description of PMDS generator matrices. This implies that over a sufficiently large finite field a randomly chosen generator matrix in PMDS standard form generates a PMDS code with high probability. This also provides sufficient conditions on the field size for the existence of PMDS codes.
Similar content being viewed by others
References
Blaum M., Hafner J.L., Hetzler S.: Partial-MDS codes and their application to RAID type of architectures. IEEE Trans. Inform. Theory 59(7), 4510–4519 (2013). https://doi.org/10.1109/TIT.2013.2252395.
Blaum M., Plank J.S., Schwartz M., Yaakobi E.: Partial MDS (PMDS) and sector-disk (SD) codes that tolerate the erasure of two random sectors. In: 2014 IEEE International Symposium on Information Theory, pp. 1792–1796 (2014). https://doi.org/10.1109/ISIT.2014.6875142.
Blaum M., Plank J.S., Schwartz M., Yaakobi E.: Construction of partial MDS and sector-disk codes with two global parity symbols. IEEE Trans. Inform. Theory 62(5), 2673–2681 (2016). https://doi.org/10.1109/TIT.2016.2536720.
Calis G., Koyluoglu O.O.: A general construction for PMDS codes. IEEE Commun. Lett. 21(3), 452–455 (2017). https://doi.org/10.1109/LCOMM.2016.2627569.
Chen J., Shum K.W., Yu Q., Sung C.W.: Sector-disk codes and partial MDS codes with up to three global parities. In: 2015 IEEE International Symposium on Information Theory (ISIT), pp. 1876–1880 (2015). https://doi.org/10.1109/ISIT.2015.7282781.
Chen M., Huang C., Li J.: On the maximally recoverable property for multi-protection group codes. In: 2007 IEEE International Symposium on Information Theory (ISIT), pp. 486–490 (2007). https://doi.org/10.1109/ISIT.2007.4557272.
Gabidulin E.M.: Theory of codes with maximum rank distance. Probl. Inf. Transm. 21(1), 3–16 (1985).
Gopalan P., Huang C., Jenkins B., Yekhanin S.: Explicit maximally recoverable codes with locality. IEEE Trans. Inform. Theory 60(9), 5245–5256 (2014). https://doi.org/10.1109/TIT.2014.2332338.
Guruswami V., Jin L., Xing C.: Constructions of maximally recoverable local reconstruction codes via function fields. ArXiv E-prints. arXiv:1808.04539 (2018).
Hartshorne R.: Algebraic Geometry, vol. 52. Springer, Berlin (2013).
Horlemann-Trautmann A.L., Marshall K.: New criteria for MRD and Gabidulin codes and some rank-metric code constructions. Adv. Math. Commun. 11(3), 533–548 (2017).
Horlemann-Trautmann A.L., Neri A.: A complete classification of partial-MDS (maximally recoverable) codes with one global parity. Adv. Math. Commun. 14(1), 69–88 (2020). https://doi.org/10.3934/amc.2020006.
Lewin D., Vadhan S.: Checking polynomial identities over any field: towards a derandomization? In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 438–447. ACM (1998).
Neri A., Horlemann-Trautmann A.L., Randrianarisoa T., Rosenthal J.: On the genericity of maximum rank distance and Gabidulin codes. Des. Codes Cryptogr. 86(2), 341–363 (2018).
Roth R.: Maximum-rank array codes and their application to crisscross error correction. IEEE Trans. Inform. Theory 37(2), 328–336 (1991). https://doi.org/10.1109/18.75248.
Schwartz J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717 (1980).
Sheekey J.: A new family of linear maximum rank distance codes. Adv. Math. Commun. 10(3), 475–488 (2016).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by V. A. Zinoviev.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
A. Neri was partially supported by Swiss National Science Foundation Grants No. 169510 and 187711.
Rights and permissions
About this article
Cite this article
Neri, A., Horlemann-Trautmann, AL. Random construction of partial MDS codes. Des. Codes Cryptogr. 88, 711–725 (2020). https://doi.org/10.1007/s10623-019-00705-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-019-00705-x