Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Erasure combinatorial batch codes based on nonadaptive group testing

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Erasure combinatorial batch codes are a family of codes for distributed storage systems which not only allow for the retrieval of any set of a limited number of items even in presence of server failures, but also balance the load among the servers when retrieving. To present new constructions is one of the objectives of studying erasure combinatorial batch codes. Nonadaptive group testing has many applications to various fields such as DNA library screening and multi-access communications, etc. A lot of constructions of nonadaptive group testing have been given by many authors. In this paper, based on nonadaptive group testing, we obtain three classes of erasure combinatorial batch codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai Y., Huang T., Wang K.: Error-correcting pooling designs associated with some distance-regular graphs. Discret. Appl. Math. 157, 3038–3045 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  2. Balachandran N., Bhattacharya S.: On an extremal hypergraph problem related to combinatorial batch codes. Discret. Appl. Math. 162, 373–380 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  3. Brualdi R.A., Kiernan K.P., Meyer S.A., Schroeder M.W.: Combinatorial batch codes and transversal matroids. Adv. Math. Commun. 4, 419–431 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  4. Bujtás C., Tuza Z.: Optimal batch codes: many items or low retrieval requirement. Adv. Math. Commun. 5, 529–541 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  5. Bujtás C., Tuza Z.: Optimal combinatorial batch codes derived from dual systems. Miskolc Math. Notes 12, 11–23 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  6. Bujtás C., Tuza Z.: Turán numbers and batch codes. Discret. Appl. Math. 186, 45–55 (2015).

    Article  MATH  Google Scholar 

  7. Chen J., Zhang S., Zhang G.: Optimal combinatorial batch code: monotonicity, lower and upper bounds. Sci. Sin. Math. 45, 311–320 (2015). (in Chinese).

    Google Scholar 

  8. Du D., Hwang F.K.: Pooling designs and nonadaptive group testing, important tools for DNA sequencing. In: Series on Applied Mathematics, vol. 18, World Scientific, Hackensack (2006).

  9. Gao S., Li Z., Wu W., Pardalos P.M., Du D.: Group testing with geometry of classical groups over finite fields. J. Algebr. Comb. (2018). https://doi.org/10.1007/s10801-018-0828-0.

  10. Guo J., Wang K.: A construction of pooling designs with surprisingly high degree of error correction. J. Combin. Theory Ser. A 118, 2056–2058 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  11. Huang T., Weng C.: Pooling spaces and nonadaptive pooling designs. Discret. Math. 282, 163–169 (2004).

    Article  MATH  Google Scholar 

  12. Ishai Y., Kushilevitz E., Ostrovsky R., Sahai A.: Batch codes and their applications. In: Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing STOC’ 04, New York, USA, vol. 36, pp. 262–271 (2004).

  13. Jia D., Zhang G., Yuan L.: A class of optimal combinatorial batch code. Acta Math. Sin. Chin. Ser. 59, 267–278 (2016). (in Chinese).

    MathSciNet  MATH  Google Scholar 

  14. Jung J.Y., Mummert C., Niese E., Schroeder M.: On erasure combinatorial batch codes. Adv. Math. Commun. 12, 49–65 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  15. Macula A.J.: A simple construction of \(d\)-disjunct matrices with certain constant weights. Discret. Math. 162, 311–312 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  16. Ngo H., Du D.: New constructions of nonadaptive and error-tolerance pooling designs. Discret. Math. 243, 161–170 (2002).

    Article  MATH  Google Scholar 

  17. Paterson M.B., Stinson D.R., Wei R.: Combinatorial batch codes. Adv. Math. Commun. 3, 13–27 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  18. Shen Y., Jia D., Zhang G.: The results on optimal values of some combinatorial batch codes. Adv. Math. Commun. 12, 681–690 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  19. Silberstein N.: Fractional repetition and erasure batch codes. In: Coding Theory and Applications, CIM Ser. Math. Sci., vol. 3, pp. 335–343. Springer, Cham (2015).

  20. Silberstein N., Gál A.: Optimal combinatorial batch codes based on block designs. Des. Codes Cryptogr. 78, 409–424 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  21. Wolf J.K.: Born again group testing: multiaccess communications. IEEE Trans. Inf. Theory IT–31, 185–191 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang G., Li B., Sun X., Li F.: A construction of \(d^z\)-disjunct matrices in a dual space of symplectic space. Discret. Appl. Math. 156, 2400–2406 (2008).

    Article  MATH  Google Scholar 

  23. Zhang G., Sun X., Li B.: Error-correcting pooling designs associated with the dual space of unitary space and ratio efficiency comparison. J. Comb. Optim. 18, 51–63 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang G., Yang Y., Zhao X.: A construction of \(d^z\)-disjunct matrices by orthogonal space and discussion on their design parameters. Discret. Math. 309, 6026–6034 (2009).

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees and editors for their valuable suggestions which have helped improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gengsheng Zhang.

Additional information

Communicated by C. J. Colbourn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is partially supported by National Natural Science Foundation of China (Grant No. 11571091), and Natural Science Foundation of Hebei Education Department (Grant No. ZD2016096)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, D., Zhang, S. & Zhang, G. Erasure combinatorial batch codes based on nonadaptive group testing. Des. Codes Cryptogr. 87, 1647–1656 (2019). https://doi.org/10.1007/s10623-018-0564-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-018-0564-4

Keywords

Mathematics Subject Classification

Navigation