Abstract
Maximum rank-distance (MRD) codes are extremal codes in the space of \(m\times n\) matrices over a finite field, equipped with the rank metric. Up to generalizations, the classical examples of such codes were constructed in the 1970s and are today known as Gabidulin codes. Motivated by several recent approaches to construct MRD codes that are inequivalent to Gabidulin codes, we study the equivalence issue for Gabidulin codes themselves. This shows in particular that the family of Gabidulin codes already contains a huge subset of MRD codes that are pairwise inequivalent, provided that \(2\leqslant m\leqslant n-2\).
Similar content being viewed by others
References
Cossidente A., Marino G., Pavese F.: Non-linear maximum rank distance codes. Des. Codes Cryptogr. 79(3), 597–609 (2016).
Csajbók B., Marino G., Polverino O., Zullo F.: Maximum scattered linear sets and MRD-codes (2017). arXiv:1701.06831 [math]
de la Cruz J., Kiermaier M., Wassermann A., Willems W.: Algebraic structures of MRD codes. Adv. Math. Commun. 10(3), 499–510 (2016).
Delsarte P.: Bilinear forms over a finite field, with applications to coding theory. J. Comb. Theory Ser. A 25(3), 226–241 (1978).
Dempwolff U., Edel Y.: Dimensional dual hyperovals and APN functions with translation groups. J. Algebr. Comb. 39(2), 457–496 (2014).
Dempwolff U., Kantor W.M.: Orthogonal dual hyperovals, symplectic spreads, and orthogonal spreads. J. Algebr. Comb. 41(1), 83–108 (2015).
Donati G., Durante N.: A generalization of the normal rational curve in PG\((d, q^n)\) and its associated non-linear MRD codes. Des. Codes Cryptogr. (2017). https://doi.org/10.1007/s10623-017-0388-7.
Durante N., Siciliano A.: Non-linear maximum rank distance codes in the cyclic model for the field reduction of finite geometries. Electron. J. Comb. 24, P2.33 (2017).
Gabidulin E.: Theory of codes with maximum rank distance. Probl. Inf. Trans. 21, 3–16 (1985).
Gow R., Quinlan R.: Galois extensions and subspaces of alternating bilinear forms with special rank properties. Linear Algebra Appl. 430(8–9), 2212–2224 (2009).
Horlemann-Trautmann A.-L., Marshall K.: New criteria for MRD and Gabidulin codes and some rank-metric code constructions. Adv. Math. Commun. 11(3), 533–548 (2017).
Huppert B.: Endliche Gruppen I. Springer, Berlin (1967).
Johnson N.L., Jha V., Biliotti M.: Handbook of Finite Translation Planes, vol. 289. Pure and Applied MathematicsChapman & Hall, Boca Raton (2007).
Koetter R., Kschischang F.: Coding for errors and erasure in random network coding. IEEE Trans. Inf. Theory 54(8), 3579–3591 (2008).
Kshevetskiy A., Gabidulin E.: The new construction of rank codes. In: International Symposium on Information Theory, 2005. ISIT 2005. pp. 2105–2108 (2005)
Lavrauw M., Polverino O.: Finite Semifields. In: Storme L., De Beule J. (eds.) Current Research Topics in Galois Geometry, Chap. 6, pp. 131–160. NOVA Academic Publishers, New York (2011).
Liebhold D., Nebe G.: Automorphism groups of Gabidulin-like codes. Arch. Math. 107(4), 355–366 (2016).
Lunardon G.: MRD-codes and linear sets. J. Comb. Theory Ser. A 149, 1–20 (2017).
Lunardon G., Trombetti R., Zhou Y.: Generalized twisted Gabidulin codes (2015). arXiv:1507.07855 [cs, math]
Lunardon G., Trombetti R., Zhou Y.: On kernels and nuclei of rank metric codes. J. Algebr. Comb. 46(2), 313–340 (2017).
Morrison K.: Equivalence for rank-metric and matrix codes and automorphism groups of Gabidulin codes. IEEE Trans. Inf. Theory 60(11), 7035–7046 (2014).
Neri A., Horlemann-Trautmann A.-L., Randrianarisoa T., Rosenthal J.: On the genericity of maximum rank distance and Gabidulin codes. Des. Codes Cryptogr. 1–23 (2017)
Sheekey J.: A new family of linear maximum rank distance codes. Adv. Math. Commun. 10(3), 475–488 (2016).
Taniguchi H., Yoshiara S.: A unified description of four simply connected dimensional dual hyperovals. Eur. J. Comb. 36, 143–150 (2014).
Trombetti R., Zhou Y.: Nuclei and automorphism groups of generalized twisted Gabidulin codes (2016). arXiv:1611.04447 [cs, math]
Wan Z.: Geometry of Matrices. World Scientific, Singapore (1996).
Acknowledgements
Yue Zhou would like to thank the hospitality of the University of Augsburg during his staying as a Fellow of the Alexander von Humboldt Foundation. This work is partially supported by the National Natural Science Foundation of China (Nos. 11401579, 11771451).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by G. Lunardon.
Rights and permissions
About this article
Cite this article
Schmidt, KU., Zhou, Y. On the number of inequivalent Gabidulin codes. Des. Codes Cryptogr. 86, 1973–1982 (2018). https://doi.org/10.1007/s10623-017-0433-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-017-0433-6