Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On the number of inequivalent Gabidulin codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Maximum rank-distance (MRD) codes are extremal codes in the space of \(m\times n\) matrices over a finite field, equipped with the rank metric. Up to generalizations, the classical examples of such codes were constructed in the 1970s and are today known as Gabidulin codes. Motivated by several recent approaches to construct MRD codes that are inequivalent to Gabidulin codes, we study the equivalence issue for Gabidulin codes themselves. This shows in particular that the family of Gabidulin codes already contains a huge subset of MRD codes that are pairwise inequivalent, provided that \(2\leqslant m\leqslant n-2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cossidente A., Marino G., Pavese F.: Non-linear maximum rank distance codes. Des. Codes Cryptogr. 79(3), 597–609 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  2. Csajbók B., Marino G., Polverino O., Zullo F.: Maximum scattered linear sets and MRD-codes (2017). arXiv:1701.06831 [math]

  3. de la Cruz J., Kiermaier M., Wassermann A., Willems W.: Algebraic structures of MRD codes. Adv. Math. Commun. 10(3), 499–510 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  4. Delsarte P.: Bilinear forms over a finite field, with applications to coding theory. J. Comb. Theory Ser. A 25(3), 226–241 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  5. Dempwolff U., Edel Y.: Dimensional dual hyperovals and APN functions with translation groups. J. Algebr. Comb. 39(2), 457–496 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  6. Dempwolff U., Kantor W.M.: Orthogonal dual hyperovals, symplectic spreads, and orthogonal spreads. J. Algebr. Comb. 41(1), 83–108 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  7. Donati G., Durante N.: A generalization of the normal rational curve in PG\((d, q^n)\) and its associated non-linear MRD codes. Des. Codes Cryptogr. (2017). https://doi.org/10.1007/s10623-017-0388-7.

  8. Durante N., Siciliano A.: Non-linear maximum rank distance codes in the cyclic model for the field reduction of finite geometries. Electron. J. Comb. 24, P2.33 (2017).

    MathSciNet  MATH  Google Scholar 

  9. Gabidulin E.: Theory of codes with maximum rank distance. Probl. Inf. Trans. 21, 3–16 (1985).

    MathSciNet  MATH  Google Scholar 

  10. Gow R., Quinlan R.: Galois extensions and subspaces of alternating bilinear forms with special rank properties. Linear Algebra Appl. 430(8–9), 2212–2224 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  11. Horlemann-Trautmann A.-L., Marshall K.: New criteria for MRD and Gabidulin codes and some rank-metric code constructions. Adv. Math. Commun. 11(3), 533–548 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  12. Huppert B.: Endliche Gruppen I. Springer, Berlin (1967).

    Book  MATH  Google Scholar 

  13. Johnson N.L., Jha V., Biliotti M.: Handbook of Finite Translation Planes, vol. 289. Pure and Applied MathematicsChapman & Hall, Boca Raton (2007).

    MATH  Google Scholar 

  14. Koetter R., Kschischang F.: Coding for errors and erasure in random network coding. IEEE Trans. Inf. Theory 54(8), 3579–3591 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  15. Kshevetskiy A., Gabidulin E.: The new construction of rank codes. In: International Symposium on Information Theory, 2005. ISIT 2005. pp. 2105–2108 (2005)

  16. Lavrauw M., Polverino O.: Finite Semifields. In: Storme L., De Beule J. (eds.) Current Research Topics in Galois Geometry, Chap. 6, pp. 131–160. NOVA Academic Publishers, New York (2011).

    Google Scholar 

  17. Liebhold D., Nebe G.: Automorphism groups of Gabidulin-like codes. Arch. Math. 107(4), 355–366 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  18. Lunardon G.: MRD-codes and linear sets. J. Comb. Theory Ser. A 149, 1–20 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  19. Lunardon G., Trombetti R., Zhou Y.: Generalized twisted Gabidulin codes (2015). arXiv:1507.07855 [cs, math]

  20. Lunardon G., Trombetti R., Zhou Y.: On kernels and nuclei of rank metric codes. J. Algebr. Comb. 46(2), 313–340 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  21. Morrison K.: Equivalence for rank-metric and matrix codes and automorphism groups of Gabidulin codes. IEEE Trans. Inf. Theory 60(11), 7035–7046 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  22. Neri A., Horlemann-Trautmann A.-L., Randrianarisoa T., Rosenthal J.: On the genericity of maximum rank distance and Gabidulin codes. Des. Codes Cryptogr. 1–23 (2017)

  23. Sheekey J.: A new family of linear maximum rank distance codes. Adv. Math. Commun. 10(3), 475–488 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  24. Taniguchi H., Yoshiara S.: A unified description of four simply connected dimensional dual hyperovals. Eur. J. Comb. 36, 143–150 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  25. Trombetti R., Zhou Y.: Nuclei and automorphism groups of generalized twisted Gabidulin codes (2016). arXiv:1611.04447 [cs, math]

  26. Wan Z.: Geometry of Matrices. World Scientific, Singapore (1996).

    Book  MATH  Google Scholar 

Download references

Acknowledgements

Yue Zhou would like to thank the hospitality of the University of Augsburg during his staying as a Fellow of the Alexander von Humboldt Foundation. This work is partially supported by the National Natural Science Foundation of China (Nos. 11401579, 11771451).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Zhou.

Additional information

Communicated by G. Lunardon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, KU., Zhou, Y. On the number of inequivalent Gabidulin codes. Des. Codes Cryptogr. 86, 1973–1982 (2018). https://doi.org/10.1007/s10623-017-0433-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-017-0433-6

Keywords

Mathematics Subject Classification

Navigation