Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Completely reducible super-simple designs with block size five and index two

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Complete reducible super-simple (CRSS) designs are closely related to \(q\)-ary constant weight codes. A \((v,k,\lambda )\)-CRSS design is just an optimal \((v,2(k-1),k)_{\lambda +1}\) code. In this paper, we mainly investigate the existence of a \((v,5,2)\)-CRSS design and show that such a design exists if and only if \(v\equiv 1,5\pmod {20}\) and \(v\ge 21\), except possibly when \(v = 25\). Using this result, we determine the maximum size of an \((n,8,5)_3\) code for all \(n\equiv 0,1,4,5 \pmod {20}\) with the only length \(n=25\) unsettled. In addition, we also construct super-simple \((v,5,3)\)-BIBDs for \(v=45,65\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abel R.J.R., Bennett F.E.: Super-simple Steiner pentagon systems. Discret. Appl. Math. 156(5) 780–793 (2008).

  2. Abel R.J.R., Colbourn C.J., Dinitz J.H.: Mutually orthogonal latin squares (MOLS). In: Colbourn C.J., Dinitz J.H., (eds.) The CRC Handbook of Combinatorial Designs, 2nd edn., pp. 160–193. CRC Press, Boca Raton (2007).

  3. Abel R.J.R., Ge G., Greig M., Ling A.C.H.: Further results on \((v,\{5, w^*\},1)\)-PBDs. Discret. Math. 309(8), 2323–2339 (2009).

  4. Adams P., Bryant D.E., Khodkar A.: On the existence of super-simple designs with block size \(4\). Aequ. Math. 51(3), 230–246 (1996).

  5. Blake-Wilson S., Phelps K.T.: Constant weight codes and group divisible designs. Des. Codes Cryptogr. 16(1), 11–27 (1999).

  6. Bush K.A.: Orthogonal arrays of index unity. Ann. Math. Stat. 23, 426–434 (1952).

  7. Caro Y., Yuster R.: Orthogonal decomposition and packing of complete graphs. J. Comb. Theory Ser. A 88(1), 93–111 (1999).

  8. Cayley A.: On the triadic arrangements of seven and fifteen things. Lond. Edinb. Dublin Philos. Mag. J. Sci. 37(3), 50–53 (1850).

  9. Chen K., Wei R.: Super-simple \((v,5,5)\) designs. Des. Codes Cryptogr. 39(2), 173–187 (2006).

  10. Chen K., Wei R.: Super-simple \((v,5,4)\) designs. Discret. Appl. Math. 155(8), 904–913 (2007).

  11. Chee Y.M., Ling S.: Constructions for \(q\)-ary constant-weight codes. IEEE Trans. Inf. Theory 53(1), 135–146 (2007).

  12. Chee Y.M., Dau S.H., Ling A.C.H., Ling S.: The sizes of optimal \(q\)-ary codes of weight three and distance four: a complete solution. IEEE Trans. Inf. Theory 54(3), 1291–1295 (2008).

  13. Chen K., Ge G., Zhu L.: Generalized Steiner triple systems with group size five. J. Comb. Des. 7(6), 441–452 (1999).

  14. Chen K., Chen G., Li W., Wei R.: Super-simple balanced incomplete block designs with block size \(5\) and index \(3\). Discret. Appl. Math. 161(16–17), 2396–2404 (2013).

  15. Colbourn C.J., Dinitz J.H. (eds.): The CRC Handbook of Combinatorial Designs. CRC Press Series on Discrete Mathematics and Its Applications, 2nd edn. CRC Press, Boca Raton (2007).

  16. Etzion T.: Optimal constant weight codes over \(Z_k\) and generalized designs. Discret. Math. 169(1–3), 55–82 (1997).

  17. Fu F.-W., Vinck A.J.H., Shen S.Y.: On the constructions of constant-weight codes. IEEE Trans. Inf. Theory 44(1), 328–333 (1998).

  18. Fu F.-W., Kløve T., Luo Y., Wei V.K.: On the Svanström bound for ternary constant-weight codes. IEEE Trans. Inf. Theory 47(5), 2061–2064 (2001).

  19. Ge G.: Generalized Steiner triple systems with group size \(g\equiv 1,5 (mod 6)\). Australas. J. Comb. 21, 37–47 (2000).

  20. Ge G.: Further results on the existence of generalized Steiner triple systems with group size \(g\equiv 1,5 (mod 6)\). Australas. J. Comb. 25, 19–27 (2002).

  21. Ge G.: Generalized Steiner triple systems with group size \(g\equiv 0, 3(mod 6)\). Acta Math. Appl. Sin. Engl. Ser. 18(4), 561–568 (2002).

  22. Ge G.: Construction of optimal ternary constant weight codes via Bhaskar Rao designs. Discret. Math. 308(13), 2704–2708 (2008).

  23. Gronau H.-D.O.F., Kreher D.L., Ling A.C.H.: Super-simple \((v,5,2)\)-designs, Discret. Appl. Math. 138(1–2), 65–77 (2004) (Optimal discrete structures and algorithms, ODSA 2000).

  24. Hartmann S.: On simple and super-simple transversal designs. J. Comb. Des. 8, 311–320 (2000).

  25. Hartmann S.: Superpure digraph designs. J. Comb. Des. 10(4), 239–255 (2002).

  26. Lu J.X.: On large sets of disjoint Steiner triple systems I, II, and III. J. Comb. Theory Ser. A 34(2), 140–146, 147–155, 156–182 (1983).

  27. Lu J.X.: On large sets of disjoint Steiner triple systems IV, V, and VI. J. Comb. Theory Ser. A 37(2), 136–163, 164–188, 189–192 (1984).

  28. Östergård P.R.J., Svanström M.: Ternary constant weight codes. Electron. J. Comb. 9, no. 1, Research Paper 41, 23 pp (2002) (electronic).

  29. Svanström M.: A lower bound for ternary constant weight codes. IEEE Trans. Inf. Theory 43(5), 1630–1632 (1997).

  30. Svanström M.: Ternary codes with weight constraints. Ph.D dissertation, Linköpings Universitet, Linköping, Sweden (1999).

  31. Svanström M., Östergård P.R.J. Bogdanova G.T.: Bounds and constructions for ternary constant-composition codes. IEEE Trans. Inf. Theory 48(1), 101–111 (2002).

  32. Teirlinck L.: A completion of Lu’s determination of the spectrum of large sets of disjoint Steiner triple systems. J. Comb. Theory Ser. A 57, 302–305 (1991).

  33. Wilson R.M.: Constructions and uses of pairwise balanced designs. Math. Centre Tracts 55, 18–41 (1974).

  34. Zhang H., Ge G.: Optimal ternary constant-weight codes of weight four and distance six. IEEE Trans. Inf. Theory 56(5), 2188–2203 (2010).

  35. Zhang H., Ge G.: Completely reducible super-simple designs with block size four and related super-simple packings. Des. Codes Cryptogr. 58(3), 321–346 (2011).

Download references

Acknowledgments

Research supported by the National Natural Science Foundation of China under Grant No. 61171198 and Zhejiang Provincial Natural Science Foundation of China under Grant No. LZ13A010001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennian Ge.

Additional information

Communicated by L. Teirlinck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, H., Zhang, H. & Ge, G. Completely reducible super-simple designs with block size five and index two. Des. Codes Cryptogr. 76, 589–600 (2015). https://doi.org/10.1007/s10623-014-9979-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-014-9979-8

Keywords

Mathematics Subject Classification

Navigation